Cómo probar esta serie $$\sum_{n=1}^{\infty }\frac{\left ( -1 \right )^{n}\ln n}{n}=\gamma \ln 2-\frac{1}{2}\ln^22$$ y \begin{align*} \sum_{n=1}^{\infty }\frac{\left ( -1 \right )^{n}\ln \left ( n+1 \right )}{n+1}&=\frac{1}{2}\ln^22-\gamma \ln 2\\ \sum_{n=1}^{\infty }\frac{\left ( -1 \right )^{n}\ln \left ( n+2 \right )}{n+2}&=\gamma \ln 2-\frac{1}{2}\ln^22-\frac{1}{2}\ln 2 \end{align*} Así que quiero saber, es que hay una forma cerrada para
$$\sum_{n=1}^{\infty }\frac{\left ( -1 \right )^{n}\ln \left ( n+k \right )}{n+k}~~~\left ( k>0 \right )$$