Encontré una ecuación que se mantiene para cualquier número natural de n y cualquier $x_i \ne x_j$ como sigue:
$$\sum\limits_{i = 1}^{n } {\prod\limits_{\substack{j = 1\\j \ne i}}^{n } {\frac{{x_i }}{{x_i - x_j }}} } = 1$$
cuando n=2, viene dada por
$$\frac{x_1}{x_1-x_2}+\frac{x_2}{x_2-x_1}=\frac{x_1 - x_2}{x_1 - x_2} = 1$$
cuando n=3, viene dada por
$$\frac{x_1^2}{(x_1-x_2)(x_1-x_3)}+\frac{x_2^2}{(x_2-x_1)(x_2-x_3)}+\frac{x_3^2}{(x_3-x_1)(x_3-x_2)}=1$$
Pero, ¿cómo puedo probar para el general $n$ ?