Yo solía tener una vaga sensación de que el residuo es el teorema de una estrecha analogía con 2D de la electrostática en la que los residuos que ellos mismos juegan un papel de punto de cargos. Sin embargo, las ecuaciones no cuadran. Si partimos de 2D electrostática dada por $$\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} = \frac{\rho}{\epsilon_0},$$ where the charge density $\rho = \sum_i q_i \delta(\vec{r}-\vec{r}_i)$ consists of point charges $q_i$ located at positions $\vec{r}_i$, and integrate over the area bounded by some curve $\mathcal{C}$, we find (using Green's theorem) $$\int_\mathcal{C} (E_x\, dy - E_y\, dx) = \frac{1}{\epsilon_0} \sum_i q_i.$$ Now, I would like to interpret the RHS as a sum of residua $2\pi i\sum_i \text{Res}\, f(z_i)$ of some analytic function $f(z_i)$ so that I would have the correspondence $$q_i = 2\pi i\epsilon_0 \text{Res}\, f(z_i).$$ For this to hold, the LHS would have to satisfy $$\int_\mathcal{C} (E_x\, dy - E_y\, dx) = \int_\mathcal{C} f(z)\, dz,$$ however, it is painfully obvious that the differential form $$E_x\, dy - E_y\, dx = -\frac{1}{2}(E_y+iE_x)dz + \frac{1}{2}(-E_y + iE_x)dz^*$$ can never be brought to the form $f(z)dz$ for an analytic $f(z)$.
Así, parece que realmente no hay ninguna analogía directa entre 2D ley de Gauss y el teorema de los residuos? O me estoy perdiendo algo?