El uso de la sustitución de $e^{3x}-1=t^3 \Rightarrow dx=\frac{t^2}{1+t^3}\,dt$ para obtener:
$$I=\frac{1}{3}\int_0^{\infty} \frac{\ln(1+t^3)}{1+t^3}\,dt$$
Considere la posibilidad de
$$I(a)=\frac{1}{3}\int_0^{\infty} \frac{\ln(a^3+t^3)}{1+t^3}\,dt$$
$$\Rightarrow I'(a)=\int_0^{\infty} \frac{a^2}{(1+t^3)(a^3+t^3)}\,dt=\frac{a^2}{a^3-1}\left(\int_0^{\infty} \frac{dt}{1+t^3}-\int_0^{\infty} \frac{dt}{a^3+t^3} \right)$$
Tanto las integrales son fáciles de evaluar, por lo tanto
$$I'(a)=\frac{a^2}{a^3-1}\left(\frac{2\pi}{3\sqrt{3}}-\frac{2\pi}{3\sqrt{3}a^2}\right)=\frac{2\pi}{3\sqrt{3}}\frac{a^2-1}{a^3-1}=\frac{2\pi}{3\sqrt{3}}\frac{a+1}{a^2+a+1}$$
$$I(a)=\frac{2\pi}{3\sqrt{3}}\left(\frac{1}{2}\ln(a^2+a+1)+\frac{\arctan\left(\frac{2a+1}{\sqrt{3}}\right)}{\sqrt{3}}\right)+C\,\,\,\,\,\,\,(*)$$
Para determinar el $C$, me evaluar $I(0)$ i.e
$$I(0)=\int_0^{\infty} \frac{\ln t}{1+t^3}\,dt=\int_0^1 \frac{\ln t}{1+t^3}\,dt+\int_1^{\infty} \frac{\ln t}{1+t^3}\,dt=J_1+J_2$$
En $J_1$, el uso de la sustitución de $t^3=y$ para obtener:
$$J_1=\frac{1}{9}\int_0^1 \frac{\ln y}{1+y}\frac{dy}{y^{2/3}}=\frac{1}{9}\sum_{k=0}^{\infty} (-1)^k\int_0^1 y^{k-2/3}\ln y=-\sum_{k=0}^{\infty} \frac{(-1)^k}{(3k+1)^2}$$
Para $J_2$, realizar la transformación $t \mapsto 1/t$ y el uso de la sustitución de $t^3=y$ para obtener:
$$J_2=\sum_{k=0}^{\infty} \frac{(-1)^k}{(3k+2)^2}$$
$$\Rightarrow I(0)=\sum_{k=0}^{\infty}(-1)^k \left(\frac{1}{(3k+2)^2}-\frac{1}{(3k+1)^2}\right)$$
No podía evaluar de dicha suma, W|da $-2\pi^2/27$. Sé que no debería ser la publicación de esta respuesta, en primer lugar, cuando yo no sé ni cómo evaluar la suma, pero he escrito mucho ya y no se dio cuenta de que sería difícil evaluar la suma. Espero que la comunidad no downvote esto y espero que alguien podría mostrar cómo evaluar esta suma.
He encontrado otro método para evaluar la suma.
$$\sum_{k=0}^{\infty}(-1)^k \left(\frac{1}{(3k+2)^2}-\frac{1}{(3k+1)^2}\right)=\sum_{k=0}^{\infty} (-1)^k \int_0^1 \int_0^1 \left((xy)^{3k+1}-(xy)^{3k}\right)\,dx\,dy$$
$$=\int_0^1\int_0^1 \frac{xy-1}{1+x^3y^3}=-\frac{2\pi^2}{27}\,\,\,\,\,(**)$$
$$I(0)=\frac{2\pi}{3\sqrt{3}}\left(\frac{\pi}{6\sqrt{3}}\right)+C=\frac{-2\pi^2}{27} \Rightarrow C=\frac{-3\pi^2}{27}$$
$$\Rightarrow I(1)=\frac{2\pi}{3\sqrt{3}}\left(\frac{\ln 3}{2}+\frac{\pi}{3\sqrt{3}}\right)-\frac{3\pi^2}{27}=\frac{\pi}{3\sqrt{3}}\left(\ln 3-\frac{\pi}{3\sqrt{3}}\right)$$
$\blacksquare$
La prueba de $(*)$:
$$\int \frac{a+1}{a^2+a+1}\,da=\frac{1}{2}\int \frac{2a+1}{a^2+a+1}\,da+\frac{1}{2}\int \frac{1}{a^2+a+1}\,da=C+D$$
$$C=\frac{1}{2}\int \frac{2a+1}{a^2+a+1}\,da \stackrel{a^2+a+1 \mapsto t}{=} \frac{1}{2}\int \frac{dt}{t}=\frac{1}{2}\ln t=\frac{1}{2}\ln(a^2+a+1)$$
$$D=\frac{1}{2}\int \frac{1}{a^2+a+1}\,da=\frac{1}{2}\int \frac{1}{\left(a+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}\,da=\frac{\arctan\left(\frac{2a+1}{\sqrt{3}}\right)}{\sqrt{3}}$$
La prueba de $(**)$
$$\int_0^1 \int_0^1 \frac{xy-1}{1+x^3y^3}\,dx\,dy=\int_0^1 \frac{\ln(1-y+y^2)-2\ln(1+y)}{3y}\,dy$$
$$=\frac{1}{3}\int_0^1 \frac{\ln(1-y+y^2)}{y}\,dy-\frac{2}{3}\int_0^1 \frac{\ln(1+y)}{y}\,dy=\frac{1}{3}X_1-\frac{2}{3}X_2$$
$$\begin{aligned}
X_1&=\int_0^1\frac{\ln(1-y+y^2)}{y}\\
&=-\sum_{k=1}^{1} \frac{1}{k} \int_0^1 y^{k-1}(1-y)^k=-\sum_{k=1}^{\infty} \frac{1}{2k}\int_0^{\infty} y^{k-1}(1-y)^{k-1} \\
&=-\frac{1}{2}\sum_{k=0}^{\infty} \frac{1}{k+1}\frac{k!^2}{(2k+1)!}\\
\end{aligned}$$
Ron Gordon ha demostrado un excelente método para evaluar dicha suma, aquí: Integral Definida, $\int_0^1\frac{\ln(x^2-x+1)}{x^2-x}\,\mathrm{d}x$
Por lo tanto, $X_1=-\frac{\pi^2}{18}$.
$$\begin{aligned}
X_2 &=\int_0^1 \frac{\ln(1+y)}{y}\,dy=-\sum_{k=1}^{\infty} \frac{(-1)^k}{k} \int_0^1 y^{k-1}\,dy\\
&=\sum_{k=1}^{\infty} -\frac{(-1)^k}{k^2}\\
&=\frac{\pi^2}{12}\\
\end{aligned}$$
Por lo tanto,
$$\int_0^1 \int_0^1 \frac{xy-1}{1+x^3y^3}=-\frac{2\pi^2}{27}$$