$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, nº 1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
$\ds{\int_{1}^{\infty}{\dd x \over x^{3} + 1} = {\root{3} \over 9}\,\pi - {\ln\pars{2} \over 3} \approx {\tt 0.3736}:\ {\large ?}}$
\begin{align}&\overbrace{\color{#66f}{\large%
\int_{1}^{\infty}{\dd x \over x^{3} + 1}}}
^{\ds{\dsc{x}=\dsc{1 \over t}\ \imp\ \dsc{t}=\dsc{1 \over x}}}\ =\
\int_{0}^{1}{t\,\dd x \over 1 + t^{3}}
=\sum_{n\ =\ 0}^{\infty}\pars{-1}^{n}\int_{0}^{1}t^{3n + 1}\,\dd t
=\sum_{n\ =\ 0}^{\infty}{\pars{-1}^{n} \over 3n + 2}
\\[5mm]&=\sum_{n\ =\ 0}^{\infty}\pars{{1 \over 6n + 2} - {1 \over 6n + 5}}
=3\sum_{n\ =\ 0}^{\infty}{1 \over \pars{6n + 2}\pars{6n + 5}}
\\[5mm]&={1 \over 12}\sum_{n\ =\ 0}^{\infty}{1 \over \pars{n + 1/3}\pars{n + 5/6}}
={1 \over 12}\,{\Psi\pars{1/3} - \Psi\pars{5/6} \over 1/3 - 5/6}
\\[5mm]&=\color{#66f}{\large%
{1 \over 6}\bracks{\Psi\pars{5 \over 6} - \Psi\pars{1 \over 3}}}
\end{align}
Con Gauss Digamma Teorema:
\begin{align}
\Psi\pars{5 \over 6}&
=-\gamma + {\root{3} \over 2}\,\pi - 2\ln\pars{2} - {3 \over 2}\,\ln\pars{3}
\\[5mm]
\Psi\pars{1 \over 3}&
=-\gamma - {\root{3} \over 6}\,\pi - {3 \over 2}\,\ln\pars{3}
\end{align}
Finalmente,
$$\color{#66f}{\large%
\int_{1}^{\infty}{\dd x \sobre x^{3} + 1}}
=\color{#66f}{\large%
{\raíz{3} \más de 9}\,\pi - {\ln\pars{2} \over 3}}
$$