$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}} \newcommand{\expo}[1]{\,\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,{\rm Li}_{#1}} \newcommand{\norm}[1]{\left\vert\left\vert\, #1\,\right\vert\right\vert} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $\ds{\int_{V}\ x^{p}\,y^{q}\,z^{r}\ \pars{1 - x - y - z}^{\,s}\,\dd x\,\dd y\,\dd z\,;\ p, q, r, s >0}$ y $\ds{V=\braces{\pars{ x,y,z} \in {\mathbb R}^{3}_{+}: x + y + z\ \leq\ 1}}$
\begin{align}&\color{#66f}{\large\left. \int_{V}\ x^{p}\,y^{q}\,z^{r}\pars{1 - x - y - z}^{\, s}\,\dd x\,\dd y\,\dd z\, \right\vert_{\, x + y + z\ < 1}} \\[5mm]&=\left.\int_{0}^{\infty}\int_{0}^{\infty} \int_{0}^{\infty}x^{p}\,y^{q}\,z^{r} \pars{1 - x - y - z}^{\,s}\,\dd x\,\dd y\,\dd z\, \right\vert_{\, x + y + z\ < 1} \\[5mm]&=\int_{0}^{\infty}\int_{0}^{\infty} \int_{0}^{\infty}x^{p}\,y^{q}\,z^{r}\ \Theta\pars{1 - x - y - z}\pars{1 - x - y - z}^{\,s}\,\dd x\,\dd y\,\dd z \\[5mm]&=\int_{0}^{\infty}\int_{0}^{\infty} \int_{0}^{\infty}x^{p}\,y^{q}\,z^{r}\ \overbrace{\int_{0^{-}}^{\infty} \delta\pars{1 - x - y - z - \xi}\xi^{\,s}\,\dd\xi} ^{\dsc{\Theta\pars{1 - x - y - z}\pars{1 - x - y - z}^{\,s}}}\ \,\dd x\,\dd y\,\dd z \\[5mm]&=\int_{0}^{\infty}\int_{0}^{\infty} \int_{0}^{\infty}\int_{0^{-}}^{\infty}x^{p}\,y^{q}\,z^{r}\xi^{\,s}\ \overbrace{% \int_{0^{+}\ -\ \infty\ic}^{0^{+}\ +\ \infty\ic} \exp\pars{\tau\bracks{1 - x - y - z - \xi}}\,{\dd\tau \over 2\pi\ic}} ^{\dsc{\delta\pars{1 - x - y - z - \xi}}}\,\,\,\, \,\dd x\,\dd y\,\dd z\,\dd\xi \\[5mm]&=\int_{0^{+}\ -\ \infty\ic}^{0^{+}\ +\ \infty\ic}\ \overbrace{\int_{0}^{\infty}x^{p}\expo{-\tau x}\,\dd x} ^{\dsc{\tau^{-p - 1}\ \Gamma\pars{p + 1}}}\ \underbrace{\int_{0}^{\infty}y^{q}\expo{-\tau y}\,\dd y} _{\dsc{\tau^{-q - 1}\ \Gamma\pars{q + 1}}}\ \overbrace{\int_{0}^{\infty}z^{r}\expo{-\tau z}\,\dd z} ^{\dsc{\tau^{-r - 1}\ \Gamma\pars{r + 1}}}\ \underbrace{\int_{0}^{\infty}\xi^{s}\expo{-\tau\xi}\,\dd\xi} _{\dsc{\tau^{-s - 1}\ \Gamma\pars{s + 1}}}\,\,\,\, \expo{\tau}\,{\dd\tau \over 2\pi\ic} \\[5mm]&=\Gamma\pars{p + 1}\Gamma\pars{q + 1}\Gamma\pars{r + 1}\Gamma\pars{s + 1}\ \underbrace{\int_{0^{+}\ -\ \infty\ic}^{0^{+}\ +\ \infty\ic} \frac{\expo{\tau}}{\tau^{p + q + r + s + 4}}\,\,\,{\dd\tau \over 2\pi\ic}} _{\ds{\dsc{1 \over \pars{p + q + r + s + 3}!}\ =\ \dsc{1 \over \Gamma\pars{p + q + r + s + 4}}}} \end{align}
Finalmente, \begin{align} &\color{#66f}{\large\left.% \int_{V}\ x^{p}\,y^{q}\,z^{r}\pars{1 - x - y - z}^{\,s}\,\dd x\,\dd y\,\dd z \,\right\vert_{\, x + y + z\ <\ 1}} \\[5mm]&=\color{#66f}{\large{\Gamma\pars{p + 1}\Gamma\pars{q + 1}\Gamma\pars{r + 1}\Gamma\pars{s + 1} \over \Gamma\pars{p + q + r + s + 4}}} \end{align}