$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\sum_{r = 0}^{50}\pars{-1}^{r}\,{{50 \choose r} \over r + 2} & =
\sum_{r = 0}^{50}\pars{-1}^{r}\,{50 \choose r}\int_{0}^{1}t^{r + 1}\,\dd t =
\int_{0}^{1}t\sum_{r = 0}^{50}{50 \choose r}\pars{-t}^{r}\,\dd t =
\int_{0}^{1}t\,\pars{1 - t}^{50}\,\dd t
\\[5mm] & =
{\Gamma\pars{2}\Gamma\pars{51} \over \Gamma\pars{53}} = {1!\,50! \over 52!} =
{1 \over 52 \times 51} = \bbx{1 \over 2652}
\end{align}