8 votos

La comparación más grande de la raíz de un polinomio de grado tres

Dado $n\ge 12$, consideran a los tres polinomios: $$f(x)=x^2-\left(\frac{(n-4)^2}{n-3}+\frac{n-2}{3(n-3)}+\frac{4}{3}\right)x+\frac{4(n-4)^2}{3(n-3)},$$ $$g(x)=x^3-\left(2+\frac{(n-5)^2}{n-4}\right)x^2+\left(\frac{3}{4}+\frac{3(n-5)^2}{2(n-4)}\right)x-\frac{(n-5)^2}{4(n-4)},$$ $$h(x)=x^3-\left(2+\frac{(n-5)(n-4)}{n-3}\right)x^2+\left(\frac{3}{4}+\frac{(n-5)(n-4)}{n-3}\right)x-\frac{(n-5)(n-4)}{4(n-3)},$$

Supongamos $f_\lambda, g_\lambda,h_\lambda$ son los más grandes de la raíz de $f(x),g(x),h(x)$ respectivamente. Con el fin de demostrar un resultado que necesita para demostrar que $f_\lambda >g_\lambda >h_\lambda.$ Para algunos valores específicos que he comprobado. Es cierto para todos los $n\ge 12$ ?

Respuesta parcial: Como mathlove menciona en la siguiente respuesta, el resultado no se sostiene. Pero aún así me siento, al menos, $f_{\lambda}>h_{\lambda}$ es cierto. Alguna idea para esto?

5voto

mathlove Puntos 57124

No, no es cierto para todos los $n\ge 12$.

Para$n=12$,$g_{\lambda}\lt h_{\lambda}$.

Prueba :

Para $n=12$, tenemos $$g(0)=-\frac{49}{32},g(1)=\frac{41}{32},g(2)=-\frac{197}{32},g(7)=\frac{413}{32}\implies g_{\lambda}\lt 7$$ y $$h(x)=\frac{1}{36}(2x-1)(18x^2-139x+56)\implies h_{\lambda}=\frac{139+\sqrt{15289}}{36}\gt \frac{139+122}{36}=7.25$$ a partir de la cual $$g_{\lambda}\lt 7\lt 7.25\lt h_{\lambda}$$ de la siguiente manera.


La próxima, vamos a demostrar que $f_{\lambda}\gt h_{\lambda}$ todos los $n\ge 12$.

Prueba :

Tenemos $$f_{\lambda}=\frac{3(3 n^2 - 19 n + 34)+\sqrt{(9n^2-81n+182)^2+64(9n-31)}}{18(n-3)}\tag1$$

Además, observa que el $x=\frac 12$ es una raíz de $h(x)$, tenemos $$h(x)=\frac{(2x-1)(2(n-3)x^2+(15n-2n^2-31)x+n^2-9n+20)}{4(n-3)}$$ Así, $$h(x)=0\iff x=\frac 12,\quad \frac{2n^2-15n+31\pm\sqrt{(2n^2-17n+39)^2+20(n-4)}}{4(n-3)}$$ Ahora, para $n\ge 12$, tenemos $$\begin{align}&\frac 12\lt \frac{2n^2-15n+31+\sqrt{(2n^2-17n+39)^2+20(n-4)}}{4(n-3)} \\\\&\iff 2(n-3)-(2n^2-15n+31)\lt \sqrt{(2n^2-17n+39)^2+20(n-4)} \\\\&\iff -\frac 18(4n-17)^2-\frac 78\lt \sqrt{(2n^2-17n+39)^2+20(n-4)} \end{align}$$ que tiene para todos los $n\ge 12$.

De ello se sigue que $$h_{\lambda}=\frac{2n^2-15n+31+\sqrt{(2n^2-17n+39)^2+20(n-4)}}{4(n-3)}\tag2$$

De $(1)(2)$, $$\pequeño\begin{align}&f_{\lambda}\gt h_{\lambda} \\\\&\iff \frac{3(3 n^2 - 19 n + 34)+\sqrt{(9n^2-81n+182)^2+64(9n-31)}}{18(n-3)}\\\\&\qquad\qquad \gt \frac{2n^2-15n+31+\sqrt{(2n^2-17n+39)^2+20(n-4)}}{4(n-3)} \\\\&\iff 6(3 n^2 - 19 n + 34)+2\sqrt{(9n^2-81n+182)^2+64(9n-31)} \\\\&\qquad\qquad \gt 9(2n^2-15n+31)+9\sqrt{(2n^2-17n+39)^2+20(n-4)} \\\\&\iff 3(7n-25)+2\sqrt{(9n^2-81n+182)^2+64(9n-31)} \\\\&\qquad\qquad\gt 9\sqrt{(2n^2-17n+39)^2+20(n-4)} \\\\&\iff 9(7n-25)^2+6(7n-25)\sqrt{(9n^2-81n+182)^2+64(9n-31)} \\\\&\qquad\qquad +4((9n^2-81n+182)^2+64(9n-31))\gt 81((2n^2-17n+39)^2+20(n-4))\\\\&\iff 6(7n-25)\sqrt{(9n^2-81n+182)^2+64(9n-31)}\gt 36((9n-104)n^2+(361n-374)) \\\\&\iff (7n-25)\sqrt{(9n^2-81n+182)^2+64(9n-31)}\gt 6((9n-104)n^2+(361n-374)) \\\\&\iff (7n-25)^2((9n^2-81n+182)^2+64(9n-31))\gt 36((9n-104)n^2+(361n-374))^2 \\\\&\iff 39 n^6 - 1200 n^5 + 15542 n^4 - 104636 n^3 + 381471 n^2 - 712796 n + 534332\gt 0\end{align}$$ que no tiene por $n\ge 12$ según WolframAlpha.

Por lo tanto, podemos decir que el $f_{\lambda}\gt h_{\lambda}$ todos los $n\ge 12$.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X