$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Permite
$\ds{{1 \over b^{x} + 1} =
{1 \over \expo{\beta x} + 1} \equiv \mathrm{f}\pars{x}:\ Fermi\!-\!Dirac\ Distribución\ Función.\quad\beta \equiv \ln\pars{b} > 0}$
\begin{align}
&\mbox{It satisfies the identity}\quad
\mrm{f}\pars{x} =
\left\{\begin{array}{lcrcl}
\ds{\Theta\pars{-x} + \,\mrm{sgn}\pars{x}\mrm{f}\pars{\verts{x}}} & \mbox{if} &
\ds{x} & \ds{\not=} & \ds{0}
\\[2mm]
\ds{1 \over 2} & \mbox{if} & \ds{x} & \ds{=} & \ds{0}
\end{array}\right.
\\[5mm]
&\mbox{donde}\ \Theta\ \mbox{es}\ Heaviside\ Paso\ Función.
\end{align}
Luego, con $\ds{a > 0}$:
$$
\bbx{\int_{-a}^{a}\mrm{E}\pars{x}\mrm{f}\pars{x}\dd x =
\int_{-a}^{0}\mrm{E}\pars{x}\dd x + \int_{0}^{a}\bracks{\mrm{E}\pars{x} - \mrm{E}\pars{-x}}\mrm{f}\pars{x}\dd x}
$$
Por otra parte
\begin{align}
\int_{-a}^{a}{\mrm{E}\pars{x} \over \pars{b^{x} + 1}^{2}}\,\dd x & =
\int_{-a}^{a}\mrm{E}\pars{x}
\bracks{-\,{1 \over \beta}\expo{-\beta x}\mrm{f}'\pars{x}}\,\dd x
\\[1cm] & \stackrel{\mrm{IBP}}{=}\,\,\,
-\,{\mrm{E}\pars{a}\expo{-\beta a}\mrm{f}\pars{a} -
\mrm{E}\pars{-a}\expo{\beta a}\mrm{f}\pars{-a} \over \beta}
\\[2mm] & +
\int_{-a}^{a}\bracks{%
{1 \over \beta}\,\mrm{E}'\pars{x}\expo{-\beta x} -
\mrm{E}\pars{x}\expo{-\beta x}}\mrm{f}\pars{x}\,\dd x
\end{align}
que se reduce al caso anterior !!!.