$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Permite a $\ds{q = 1 - p}$:
\begin{align}
\sum_{x = 1}^{\infty}x^{3}\pars{1 - p}^{x - 1} & =
{1 \over q}\sum_{x = 0}^{\infty}x^{3}q^{x} =
{1 \over q}\pars{q\,\partiald{}{q}}^{3}\sum_{x = 0}^{\infty}q^{x} =
{1 \over q}\pars{q\,\partiald{}{q}}^{3}{1 \over 1 - q}
\\[5mm] & =
{1 \over q}\pars{q\,\partiald{}{q}}^{2}{q \over \pars{1 - q}^{2}} =
{1 \over q}\,q\,\partiald{}{q}q\,\partiald{}{q}{q \over \pars{1 - q}^{2}} =
\partiald{}{q}{q + q^{2} \over \pars{1 - q}^{3}}
\\[5mm] & =
{1 + 4q + q^{2} \over \pars{1 - q}^{4}} =
{1 + 4\pars{1 - p} + \pars{1 - p}^{2} \over p^{4}} =
\bbx{6 - 6p + p^{2} \over p^{4}}
\end{align}