Deje $x^{3}+ax+10=0$ $x^{3}+bx^{2}+50=0$ tiene dos raíces en común. Deje $P$ ser el producto de estas raíces comunes. Encontrar el valor numérico de $P^{3}$, que no impliquen $a,b$.
Mis intentos:
Vamos a las raíces de $x^{3}+ax+10=0$ $\alpha,\beta,\gamma\implies$ \begin{align*} &\alpha+\beta+\gamma =0 \\ &\alpha\beta+\alpha\gamma+\beta\gamma =a \\ &\alpha\beta\gamma = -10 \end{align*}
y de $x^{3}+bx^{2}+50=0$ $\alpha,\beta,\gamma'\implies$ \begin{align*} &\alpha+\beta+\gamma' =-b \\ &\alpha\beta+\alpha\gamma'+\beta\gamma' =0 \\ &\alpha\beta\gamma' = -50 \end{align*}
Algunos de ecuaciones:
- $\dfrac{\alpha\beta\gamma'}{\alpha\beta\gamma}=\dfrac{-50}{-10}=5$ $\implies \gamma'=5\gamma $
- $\gamma-\gamma'=b \because$ Restando a la primera eq
- $(\alpha+\beta)(\gamma-\gamma')=a$ Restando la segunda ecuación. desde arriba
- $\alpha+\beta=\dfrac{a}{b} \ \ \because(2),(3)$ cuadrado, se obtiene: $(\alpha+\beta)^{2}=\dfrac{a^{2}}{b^{2}}$
- $\alpha\beta\gamma-\alpha\beta\gamma'=40\implies\alpha\beta(\gamma-\gamma')=40\implies\alpha\beta=\dfrac{40}{b}$
También se $(\alpha+\beta+\gamma')^{2} =b^{2}$
$\implies \alpha^2+\beta^2+\gamma'^2=b^2 \implies \alpha^2+\beta^2=b^2-\gamma'^2=b^2-\dfrac{25b^{2}}{16}=\dfrac{-9b^2}{16}\because (2),(1)$
Ahora, el cuadrado de la primera eq. de la primera serie de eq.$\implies \alpha^2+\beta^2+\gamma^2+2a =0 \implies \alpha^2+\beta^2=\dfrac{-b^2}{16}-2a\because (2),(1)$
Equiparar esto con ecuaciones anteriores, $\implies \alpha^2+\beta^2=\dfrac{-9b^2}{16}=\dfrac{-b^2}{16}-2a\implies a^2=\dfrac{b^4}{16}\rightarrow(7)$
También, $\alpha^2 +\beta^2 +2\alpha\beta=\dfrac{a^2}{b^2} \because(4)$. Y se calculó la misma cosa en términos de $b$, poniendo todos estos,$\implies \dfrac{-9b^2}{16} +2\alpha\beta=\dfrac{b^4}{16b^2}\because(7)\implies \dfrac{80}{b}=\dfrac{10b^2}{16}\ \because (5)\implies b^3=128\rightarrow(6)$
Ahora, $(eq.5)^3\implies (\alpha\beta)^3=\dfrac{64000}{b^3}=\dfrac{64000}{128}=500=P^3\because(6)$
Es esto correcto, y si, entonces, ¿qué es más fácil/método más corto, aparte de mi GIGANTE método.