Ramanujan ofertas con las sumas de tipo $$S_{r}(q) = -\frac{B_{r + 1}}{2(r + 1)} + \sum_{n = 1}^{\infty}\frac{n^{r}q^{n}}{1 - q^{n}}\tag{1}$$ where $B_{r}$ are Bernoulli's Numbers defined by $$\frac{x}{e^{x} - 1} = \sum_{r = 0}^{\infty}B_{r}\frac{x^{r}}{r!}\tag{2}$$ in his paper On certain arithmetical functions which appeared in Transactions of the Cambridge Philosophical Society in 1916. And he gives the general recursion formula for $S_{r}$ through which we can calculate the value of $S_{r}(q)$ in terms of a polynomial in functions $P(q), (Q, q), R(q)$ which are given by $$P(q) = -24S_{1}(q), Q(q) = 240S_{3}(q), R(q) = -504S_{5}(q)\tag{3}$$ Moreover using link between theta functions and elliptic integrals it is possible to express $P, Q, R$ in terms of elliptic integral $K$ and modulus $k$ where $k$ corresponds to nome $p$. It is thus possible to express $S_{r}(q)$ as a polynomial in $K, k$. The sum in your question deals with the values of $$S_{r}(q^{2}) + \frac{B_{r + 1}}{2(r + 1)}$$ for $q = e^{-\pi}$ which translates to $k = 1/\sqrt{2}$ and $K = \Gamma^{2}(1/4)/4\sqrt{\pi}$. And hence one should expect the occurrence of $\Gamma(1/4)$ in the evaluations. When $r$ is of type $4m + 1$ then the value of $S_{r}$ is always a polynomial with factor $R$ (this is proved by Ramanujan) and for $q = e^{-\pi}$ the value of $R(q^{2})$ is $0$ because $$R(q^{2}) = \left(\frac{2K}{\pi}\right)^{6}(1 + k^{2})(1 - 2k^{2})\left(1 - \frac{k^{2}}{2}\right)$$ which vanishes when $k = 1/\sqrt{2}$. It follows that for $r = 4m + 1$ we have the desired sum as $\dfrac{B_{i + 1}}{2(r + 1)}$ (esto le da a la fórmula general para la suma de tipo II en tu pregunta).
Al $r$ es de tipo $r = 4m + 3$ la suma deseada se expresa como un número racional, además de algunos expresión que consta de $\Gamma(1/4)$$\pi$. De nuevo el número racional en esta expresión es $B_{r + 1}/2(r + 1)$. La fórmula general es que no se conoce, pero el uso de Ramanujan la tabla de valores de $S_{r}(q)$ en su papel podemos hacer esto para todos los impares $r$ hasta $r = 31$.
Así, por ejemplo, Ramanujan le da la fórmula para $r = 31$ $$7709321041217 + 32640\sum_{n = 1}^{\infty}\frac{n^{31}q^{n}}{1 - q^{n}} = 764412173217Q^{8}(q) + \text{ terms containing }R(q)\tag{4}$$ and therefore $$\sum_{n = 1}^{\infty}\frac{n^{31}}{e^{2\pi n} - 1} = \frac{764412173217Q^{8}(e^{-2\pi})}{32640} - \frac{7709321041217}{32640}$$ where $$Q(e^{-2\pi}) = Q(q^{2}) = \left(\frac{2K}{\pi}\right)^{4}(1 - k^{2} + k^{4})$$ with $k = 1/\sqrt{2}$ and $K = \Gamma^{2}(1/4)/4\sqrt{\pi}$.
También tenga en cuenta que la expresión de la $S_{r}$ $r = 4m + 3$ tiene sólo un término sin $R$ y que es un racional múltiples de $Q^{(r + 1)/4}$ y, por tanto, de ello se sigue que la suma en cuestión para $r = 4m + 3$ es de la forma $$A\cdot\frac{\Gamma^{2(r + 1)}(1/4)}{\pi^{3(r + 1)/2}} + \frac{B_{r + 1}}{2(r + 1)}$$ where $Una$ es un número racional.
Una exposición de Ramanujan del documento mencionado arriba es dado en mi blog aquí y aquí.