Este problema es equivalente a encontrar el $K_3$-embalaje número de $K_n$ como se indica en este documento.
$H = K_3$
$d = \text{gcd}(H) = 2$
$h = |V(H)| = \displaystyle\binom{3}{2} = 3$
$\displaystyle\frac{2h}{d} = \frac{2*3}{2} = 3$
Tenemos
$\begin{align*}
P(H, K_n) &= \begin{cases}
\left\lfloor \frac{dn}{2h} \left\lfloor \frac{n-1}{d} \right\rfloor
\right\rfloor - 1, & n \equiv 1 \mod d, \frac{n(n-1)}{d} \equiv b \mod \frac{2h}{d}:1\le b \le d\\
\left\lfloor \frac{dn}{2h} \left\lfloor \frac{n-1}{d} \right\rfloor \right\rfloor, & \text{o/w}
\end{casos}\\
P(K_3, K_n) y= \begin{cases}
\left\lfloor \frac{n}{3} \left\lfloor \frac{n-1}{2} \right\rfloor
\right\rfloor - 1, & n \equiv 1 \mod 2, \frac{n(n-1)}{2} \equiv b \mod 3:1\le b \le 2\\
\left\lfloor \frac{n}{3} \left\lfloor \frac{n-1}{2} \right\rfloor \right\rfloor, & \text{o/w}
\end{casos}\\
y= \begin{cases}
\left\lfloor \frac{n}{3} \left\lfloor \frac{n-1}{2} \right\rfloor
\right\rfloor - 1, & n \equiv 1 \mod 2, \frac{n(n-1)}{2} \not\equiv 0 \mod 3\\
\left\lfloor \frac{n}{3} \left\lfloor \frac{n-1}{2} \right\rfloor \right\rfloor, & \text{o/w}
\end{casos}
\end{align*}$
Podemos simplificar $n \equiv 1 \mod 2, \displaystyle\frac{n(n-1)}{2} \not\equiv 0 \mod 3$:
Caso 1:
$\begin{align*}
\frac{n(n-1)}{2} &\equiv 1 \mod 3\\
n(n-1) &\equiv 2 \mod 3\\
n^2 - n - 2 &\equiv 0 \mod 3\\
n &\equiv 2 \mod 3\\
\end{align*}$
Caso 2:
$\begin{align*}
\frac{n(n-1)}{2} &\equiv 2 \mod 3\\
n(n-1) &\equiv 1 \mod 3\\
n^2 - n - 1 &\equiv 0 \mod 3
\end{align*}$
No hay soluciones a $n^2 - n - 1 \equiv 0 \mod 3$, lo $\displaystyle\frac{n(n-1)}{2} \not\equiv 0 \mod 3 \iff n \equiv 2 \mod 3$
Ahora tenemos $n \equiv 1 \mod 2$$n \equiv 2 \mod 3$. La aplicación de la CRT nos da $n \equiv 5 \mod 6$. Esto reduce la ecuación a
$P(K_3, K_n) = \begin{cases}
\left\lfloor \frac{n}{3} \left\lfloor \frac{n-1}{2} \right\rfloor
\right\rfloor - 1, & n\equiv 5 \mod 6\\
\left\lfloor \frac{n}{3} \left\lfloor \frac{n-1}{2} \right\rfloor \right\rfloor, & \text{o/w}
\end{casos}$
Además,
$\begin{align*}
n \equiv 5 \mod 6 &\implies 2|(n-1)\\
&\implies \left\lfloor \frac{n}{3} \left\lfloor \frac{n-1}{2} \right\rfloor
\right\rfloor - 1 = \left\lfloor \frac{n}{3} * \frac{n-1}{2}
\right\rfloor - 1 = \left\lfloor \frac{n(n-1)}{6}
\right\rfloor - 1\\
n \equiv 5 \mod 6 &\implies n(n-1) \equiv 2 \mod 6\\
&\implies \left\lfloor \frac{n(n-1)}{6} \right\rfloor - 1 = \frac{n(n-1)-2}{6} - 1\\
&\implies P(K_3, K_n) = \begin{cases}
\frac{n(n-1) - 8}{6}, & n\equiv 5 \mod 6\\
\left\lfloor \frac{n}{3} \left\lfloor \frac{n-1}{2} \right\rfloor \right\rfloor, & \text{o/w}
\end{casos}
\end{align*}$
Nota para $n \not\equiv 5 \mod 6$:
$\begin{align*}
n\equiv 1 \mod 2 &\implies \left\lfloor \frac{n}{3} \left\lfloor \frac{n-1}{2} \right\rfloor \right\rfloor = \left\lfloor \frac{n}{3} * \frac{n-1}{2} \right\rfloor = \left\lfloor \frac{n(n-1)}{6} \right\rfloor\\
n(n-1) \equiv 0 \mod 6 &\implies n \equiv 0,1,3,4 \mod 6 \implies \left\lfloor \frac{n(n-1)}{6} \right\rfloor = \frac{n(n-1)}{6}\\
\end{align*}$
Si tomamos la intersección de los dos, conseguimos $n \equiv 1, 3 \mod 6 \implies P(K_3, K_n) = \displaystyle\frac{n(n-1)}{6}$ cual es el resultado obtenido de Steiner triple sistemas.
$\begin{align*}
n \equiv 0 \mod 6 \implies \left\lfloor \frac{n}{3} \left\lfloor \frac{n-1}{2} \right\rfloor \right\rfloor &= \frac{n}{3} \left\lfloor \frac{n-1}{2} \right\rfloor\\
&= \frac{n}{3} * \frac{n-2}{2}\\
&= \frac{n(n-2)}{6}
\end{align*}$
$\begin{align*}
n \equiv 2 \mod 6 \implies \left\lfloor \frac{n}{3} \left\lfloor \frac{n-1}{2} \right\rfloor \right\rfloor &= \left\lfloor \frac{n}{3} * \frac{n-2}{2} \right\rfloor\\
&= \left\lfloor \frac{n-2}{3} * \frac{n}{2} \right\rfloor\\
&= \frac{n(n-2)}{6}
\end{align*}$
$\begin{align*}
n \equiv 4 \mod 6 \implies \left\lfloor \frac{n}{3} \left\lfloor \frac{n-1}{2} \right\rfloor \right\rfloor &= \left\lfloor \frac{n}{3} * \frac{n-2}{2} \right\rfloor\\
&= \left\lfloor \frac{n(n-2)}{6} \right\rfloor\\
&= \frac{n(n-2) - 2}{6}
\end{align*}$
Ahora tenemos un piso de menos de fórmula:
$P(K_3, K_n) = \begin{cases}
\
\frac{n(n-2)}{6}, &n \equiv 0,2 \mod 6\\
\frac{n(n-1)}{6}, &n \equiv 1,3 \mod 6\\
\frac{n(n-2) - 2}{6}, &n \equiv 4 \mod 6\\
\frac{n(n-1) - 8}{6}, &n \equiv 5 \mod 6
\end{casos}$