$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \sum_{k = 1}^{n}{k \over n^{2} + k} & = \underbrace{\qquad{1 \over n}\sum_{k = 1}^{n}{k \over n}\qquad} _{\ds{\stackrel{\mrm{as}\ n\ \to\ \infty}{\large\to} \int_{0}^{1}x\,\dd x = \color{red}{1 \over 2}}}\ -\ \overbrace{\qquad\underbrace{{1 \over n^{2}}\sum_{k = 1}^{n}{k^{2} \over n^{2} + k}}_{\ds{>\ 0}}\qquad} ^{\ds{< {1 \over n^{2}}\,\pars{n^{2} \over n^{2} + 1}n}}\ \,\,\,\stackrel{\mrm{as}\ n\ \to\ \infty}{\large \to}\,\,\, \bbx{1 \over 2} \end{align}