Este es un método bastante fácil: Sólo he preguntado a GAP. :-)
Calcula las clases de conjugación de los no generadores. Muestra su tamaño, el grupo que generan (en lugar de A5) y los representantes de los generadores. Alrededor del 36% de los pares son no generadores.
``
gap> non:=Filtered(Combinations(AsSet(AlternatingGroup(5)),2),x->Size(Group(x))<60);;
gap> orbs:=Orbits(AlternatingGroup(5),non,OnSets);;
gap> PrintArray(List(orbs,o->\[Size(o),o\[1\]\]));
\[ \[ 20, C3, \[ (), (3,4,5) \] \],
\[ 15, C2, \[ (), (2,3)(4,5) \] \],
\[ 12, C5, \[ (), (1,2,3,4,5) \] \],
\[ 12, C5, \[ (), (1,2,3,5,4) \] \],
\[ 10, C3, \[ (3,4,5), (3,5,4) \] \],
\[ 60, A4, \[ (3,4,5), (2,3)(4,5) \] \],
\[ 60, A4, \[ (3,4,5), (2,3,4) \] \],
\[ 30, A4, \[ (3,4,5), (2,3,5) \] \],
\[ 60, S3, \[ (3,4,5), (1,2)(4,5) \] \],
\[ 60, A4, \[ (3,4,5), (1,3)(4,5) \] \],
\[ 30, A4, \[ (3,4,5), (1,3,5) \] \],
\[ 15, C2 x C2, \[ (2,3)(4,5), (2,4)(3,5) \] \],
\[ 30, S3, \[ (2,3)(4,5), (1,2)(4,5) \] \],
\[ 30, D10, \[ (2,3)(4,5), (1,2)(3,4) \] \],
\[ 30, D10, \[ (2,3)(4,5), (1,2)(3,5) \] \],
\[ 60, D10, \[ (2,3)(4,5), (1,2,4,5,3) \] \],
\[ 60, D10, \[ (2,3)(4,5), (1,2,5,4,3) \] \],
\[ 12, C5, \[ (1,2,3,4,5), (1,3,5,2,4) \] \],
\[ 12, C5, \[ (1,2,3,4,5), (1,4,2,5,3) \] \],
\[ 6, C5, \[ (1,2,3,4,5), (1,5,4,3,2) \] \],
\[ 6, C5, \[ (1,2,3,5,4), (1,4,5,3,2) \] \] \]