La pregunta inicial es encontrar $$\lim_{n\rightarrow \infty}n^3\left(\tan\left(\int_{0}^{\pi}\sqrt[n] {\sin x}\,{\rm d}x\right)+\sin\left(\int_{0^+}^{\pi}\sqrt[n] {\sin x}\,{\rm d}x\right)\right),$$ y yo simplificar a ser $$\lim_{h\rightarrow0} \frac{1}{h}\left(\int_{0}^{\pi}\sin^{h}x\,{\rm d}x-\pi\right)=?$$
Estoy equivocado o alguna idea? $$\lim_{n\rightarrow \infty}n^3\left(\tan\left(\int_{0}^{\pi}\sqrt[n] {\sin x}{\rm d}x\right)+\sin\left(\int_{0}^{\pi}\sqrt[n] {\sin x}{\rm d}x\right)\right)\\= \lim_{h\rightarrow 0^+}\frac{1}{h^3}{\left(\tan\left(\int_{0}^{\pi} {\sin^h x}{\rm d}x\pi\right)-\sin\left(\int_{0}^{\pi} {\sin^h x}{\rm d}x\pi\right)\right)}\\=\frac{1}{2}\lim_{h\rightarrow 0^+}\frac{1}{h^3}\left({\int_{0}^{\pi}\sin^{h}x~{\rm d}x\pi}\right)^3$$