Escribir
$$\frac{\partial}{\partial x} = \frac{\partial r}{\partial x} \frac{\partial}{\partial r} + \frac{\partial \theta}{\partial x} \frac{\partial}{\partial \theta}$$
donde $r=\sqrt{x^2+y^2}$ y $\tan{\theta} = y/x$. Entonces $\partial r/\partial x = x/r$ y $\partial \theta/\partial x = -y/r^2$, y
$$\frac{\partial}{\partial x} = \frac{x}{r} \frac{\partial}{\partial r} -\frac{y}{r^2} \frac{\partial}{\partial \theta}$$
Del mismo modo, puede mostrar
$$\frac{\partial}{\partial y} = \frac{y}{r} \frac{\partial}{\partial r} +\frac{x}{r^2} \frac{\partial}{\partial \theta}$$
El Laplaciano es entonces
$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \left (\frac{x}{r} \frac{\partial}{\partial r} -\frac{y}{r^2} \frac{\partial}{\partial \theta} \right )^2 + \left (\frac{y}{r} \frac{\partial}{\partial r} +\frac{x}{r^2} \frac{\partial}{\partial \theta} \right )^2$$
Esto debería ser suficiente para ir a.