$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{1}{\ln^{3}\pars{x} \over 2 - x}\,\dd x:\ {\large ?}}$
\begin{align}&\overbrace{\color{#c00000}{\int_{0}^{1}
{\ln^{3}\pars{x} \over 2 - x}\,\dd x}}
^{\ds{\mbox{Set}\ x \equiv \expo{-t}\ \imp\ t = -\ln\pars{x}}}\ =\
\half\int_{\infty}^{0}{-t^{3} \over 1 - \expo{-t}/2}\,\pars{-\expo{-t}\,\dd t}
\\[3mm]&=-\,\half\int_{0}^{\infty}
t^{3}\expo{-t}\sum_{n = 0}^{\infty}\pars{\half}^{n}\expo{-nt}\,\dd t
=-\,\half\sum_{n = 0}^{\infty}\pars{\half}^{n}
\int_{0}^{\infty}t^{3}\expo{-\pars{n + 1}t}\,\dd t
\\[3mm]&=-\,\half\sum_{n = 0}^{\infty}{\pars{1/2}^{n} \over \pars{n + 1}^{4}}\
\overbrace{\int_{0}^{\infty}t^{3}\expo{-t}\,\dd t}^{\ds{=\ 3!\ = 6}}\ =\
-6\sum_{n = 1}^{\infty}{\pars{1/2}^{n} \over n^{4}}
\end{align}
$$
\color{#66f}{\large%
\int_{0}^{1}{\ln^{3}\pars{x} \over 2 - x}\,\dd x
=-6\,{\rm Li}_{4}\pars{1 \over 2}} \approx -3.1049
$$
$\ds{{\rm Li_{s}}\pars{z}}$ es un
PolyLogarithm Función.