9 votos

Quadirlogarithm valor $\operatorname{Li}_4 \left( \frac{1}{2}\right)$

Hay una conocida forma cerrada para la siguiente

$$\operatorname{Li}_4 \left( \frac{1}{2}\right)$$

Sé que podemos derivar el cerrado de $\operatorname{Li}_1 \left( \frac{1}{2}\right),\operatorname{Li}_2 \left( \frac{1}{2}\right),\operatorname{Li}_3 \left( \frac{1}{2}\right)$

Para ponerlo en una representación integral, el problema pregunta a resolver

$$\int^1_0 \frac{\log(x)^3}{2-x}\, dx$$

3voto

Dennis Puntos 9534

Wolfram página en polylogarithms dice que no cierra fórmula es conocida por $\mathrm{Li}_n\left(\frac12\right)$$n\geq4$, véase el comentario después de su fórmula (17).

Por lo tanto, como dije respondiendo a tu otra pregunta, yo estaría sorprendido si alguien venga con una respuesta.

3voto

Felix Marin Puntos 32763

$\newcommand{\+}{^{\daga}} \newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle} \newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\mitad}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\a la derecha\vert\,} \newcommand{\cy}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left (\, nº 1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{\int_{0}^{1}{\ln^{3}\pars{x} \over 2 - x}\,\dd x:\ {\large ?}}$

\begin{align}&\overbrace{\color{#c00000}{\int_{0}^{1} {\ln^{3}\pars{x} \over 2 - x}\,\dd x}} ^{\ds{\mbox{Set}\ x \equiv \expo{-t}\ \imp\ t = -\ln\pars{x}}}\ =\ \half\int_{\infty}^{0}{-t^{3} \over 1 - \expo{-t}/2}\,\pars{-\expo{-t}\,\dd t} \\[3mm]&=-\,\half\int_{0}^{\infty} t^{3}\expo{-t}\sum_{n = 0}^{\infty}\pars{\half}^{n}\expo{-nt}\,\dd t =-\,\half\sum_{n = 0}^{\infty}\pars{\half}^{n} \int_{0}^{\infty}t^{3}\expo{-\pars{n + 1}t}\,\dd t \\[3mm]&=-\,\half\sum_{n = 0}^{\infty}{\pars{1/2}^{n} \over \pars{n + 1}^{4}}\ \overbrace{\int_{0}^{\infty}t^{3}\expo{-t}\,\dd t}^{\ds{=\ 3!\ = 6}}\ =\ -6\sum_{n = 1}^{\infty}{\pars{1/2}^{n} \over n^{4}} \end{align}

$$ \color{#66f}{\large% \int_{0}^{1}{\ln^{3}\pars{x} \over 2 - x}\,\dd x =-6\,{\rm Li}_{4}\pars{1 \over 2}} \approx -3.1049 $$

$\ds{{\rm Li_{s}}\pars{z}}$ es un PolyLogarithm Función.

3voto

lisalisa Puntos 126

El uso de Borwein de papel (1996), la quadrilogarithm valor puede ser expresado por:

$Li_{4} (\frac{1}{2}) = \frac{\pi^4}{360} - \frac{(\log 2)^4}{24} + \frac{\pi^2 (\log 2)^2}{24} - \frac{1}{2} \zeta(\overline 3 , \overline 1) $

Donde hemos introducido la alternativa múltiples zeta función como:

$\zeta(\overline a , \overline b) = \sum_{m>n>0} \frac{(-1)^{m+n}}{m^a n^b}$

Valores superiores pueden ser evaluados por las múltiples funciones zeta.

2voto

Técnicas relacionadas. Usted puede tener el siguiente nueva identidad

$$\frac{1}{6}\int^1_0 \frac{\log(x)^3}{x-2} dx= \operatorname{Li}_4 \left( \frac{1}{2}\right) = 2\zeta(4) - \operatorname{Li}_4(2)-i\frac{\pi\ln^3(2)}{6}+\frac{{\pi }^{2} \ln^2\left( 2 \right)}{6}-\frac{\ln^4\left( 2\right)}{24}$$

Tenga en cuenta que, el anterior nos da una relación entre el $\operatorname{Li}_4\left( \frac{1}{2}\right)$ $\operatorname{Li}_4\left( {2}\right)$ lo cual es bueno.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X