6 votos

Búsqueda de $\lim x_n$ al $\left( 1+\frac{1}{n}\right)^{n+x_n}=1+\frac{1}{1!}+\frac{1}{2!}+\dots+\frac{1}{n!}$

Deje $x_n$ ser la única solución de la ecuación de $$\left( 1+\frac{1}{n}\right)^{n+x_n}=1+\frac{1}{1!}+\frac{1}{2!}+\dots+\frac{1}{n!}$$ Encontrar $\lim_{n \to \infty} x_n$

Creo que el límite debe ser $\frac{1}{2}$, debido a $\left(1+\frac{1}{n}\right)^{n+\frac{1}{2}}$ es decreciente y convergente a $e$, mientras que $1+\frac{1}{1!}+\dots+\frac{1}{n!}$ es creciente y convergente a $e$, lo $$\left(1+\frac{1}{n}\right)^{n+\frac{1}{2}}>1+\frac{1}{1!}+\dots+\frac{1}{n!}$$ lo que significa que $\frac{1}{2}>x_n$. También sé que para $a \in [0,\frac{1}{2}), \left(1+\frac{1}{n}\right)^{n+a}$ es aumentar el tiempo, pero no sé cómo obtener un límite inferior para $x_n$ que va a $\frac{1}{2}$

7voto

fianchetto Puntos 186

Respuesta. $x_n\to \dfrac{1}{2}$

Explicación. Serie de Taylor resto $$ \mathrm{e}=1+\frac{1}{1!}+\cdots+\frac{1}{n!}+\frac{\mathrm{e}^{\xi_n}}{(n+1)!} $$ para algunos $\xi_n\in(0,1)$. Desde $$\left( 1+\frac{1}{n}\right)^{n+x_n}=1+\frac{1}{1!}+\frac{1}{2!}+\dots+\frac{1}{n!},$$ Entonces $$ n+x_n=\frac{\log\left(\mathrm{e}-\dfrac{\mathrm{e}^{\xi_n}}{(n+1)!}\right)}{\log\left(1+\frac{1}{n}\right)}=\frac{1+\log\left(1-\dfrac{\mathrm{e}^{\xi_n-1}}{(n+1)!}\right)}{\dfrac{1}{n}-\dfrac{1}{2n^2}+{\mathcal O}(n^{-3})}=n\cdot\frac{1+{\mathcal O}\left(\frac{1}{(n+1)!}\right)}{1-\dfrac{1}{2n}+{\mathcal O}(n^{-2})}\\=n+\frac{\dfrac{1}{2}+{\mathcal O}(n^{-1})}{1-\dfrac{1}{2n}+{\mathcal O}(n^{-2})} $$ y por lo tanto $$ x_n\a \frac{1}{2} $$

6voto

Roger Hoover Puntos 56

El límite es, de hecho,$\frac{1}{2}$. Debido a la fórmula de Taylor con integral resto,

$$ \sum_{k=0}^{n}\frac{1}{k!} = e-\int_{0}^{1}\frac{(1-t)^n}{n!}\,e^t\,dt=e\left(1+O\left(\tfrac{1}{(n+1)!}\right)\right)=\exp\left(1+O\left(\tfrac{1}{(n+1)!}\right)\right)\tag{1} $$ mientras $$ \left(1+\frac{1}{n}\right)^{n+x}=\exp\left[(n+x)\left(\frac{1}{n}-\frac{1}{2n^2}+o\left(\frac{1}{n^2}\right)\right)\right]=\exp\left[1+\frac{x-\frac{1}{2}}{n}+o\left(\frac{1}{n}\right)\right]\tag{2} $$ así, equiparando la RHSs de $(1)$ $(2)$ obtenemos $\lim_{n\to +\infty}x_n=\frac{1}{2}$ como se esperaba.

3voto

Guy Fabrice Puntos 21

Si $$\left( 1+\frac{1}{n}\right)^{n+x_n}=1+\frac{1}{1!}+\frac{1}{2!}+\dots+\frac{1}{n!}$$ entonces tenemos $$\begin{align}x_n&=\frac{\ln\left(1+\frac{1}{1!}+\frac{1}{2!}+\dots+\frac{1}{n!}\right)}{\ln\left( 1+\frac{1}{n}\right)}-n\\&\sim \frac{\ln\left(1+\frac{1}{1!}+\frac{1}{2!}+\dots+\frac{1}{n!}\right)}{\left(\frac{1}{n}-\frac{1}{2n^2}\right)}-n \\&= n\left( \frac{\ln\left(1+\frac{1}{1!}+\frac{1}{2!}+\dots+\frac{1}{n!}\right)}{1-\frac{1}{2n}}-1\right)\\&\sim n\left( \ln\left(1+\frac{1}{1!}+\frac{1}{2!}+\dots+\frac{1}{n!}\right)-1+\color{blue}{\frac{1}{2n}}\ln\left(1+\frac{1}{1!}+\frac{1}{2!}+\dots+\frac{1}{n!}\right)\right)&\to \color{red}{\frac12} \end{align}$$

Dado que el $$\ln\left(1+\frac{1}{1!}+\frac{1}{2!}+\dots+\frac{1}{n!}\right)\to 1$$

2voto

Paramanand Singh Puntos 13338

La definición de $x_n$ puede ser utilizado directamente para evaluar el límite. Para simplificar vamos a escribir $s_n=\sum_{i=0}^{n}1/i!$. Entonces tenemos $$x_n=\frac{\log s_n-n\log(1+n^{-1})}{\log(1+n^{-1})}$$ Since $n\log(1+(1/n))\a 1$ the desired limit is equal to the limit of $$n\log s_n-n^2\log(1+(1/n))$$ and now we need to use Taylor series for $\log(1+x)$ to get $$\lim_{n\to\infty} n^2\log(1+(1/n))-n=-\frac{1}{2}$$ and thus our original limit is equal to the limit of $$\frac{1}{2}+n\log s_n-n$$ The next step needs some gymnastics with inequalities. We have $$e-s_n=\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\dots$$ which is less than $$\frac{1}{n!}\left(\frac{1}{n+1}+\frac{1}{(n+1)^2}+\dots\right)=\frac{1}{n!}\frac{1/(n+1)}{1-1/(n+1)}=\frac{1}{n\cdot n!} $$ and therefore we have $$1<\frac{e}{s_n}<1+\frac{1}{ns_n\cdot n!} $$ and applying logs we can see that $$0<n-n\log s_n<n\log\left(1+\frac{1}{ns_n\cdot n!} \right) \leq \frac{1}{s_n\cdot n!} $$ Since $s_n\a e$ by Squeeze Theorem we can see that $n-n\log s_n\a 0$ and therefore the desired limit is $1/2$.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X