f(t) es función continua.Así Sé que $\int _0^x {f(t) dt}=$ "La neta del área comprendida entre el $t=0, y=0, t=x$, e $y=f(t)$"
Y no puedo encontrar el mismo resultado con un sinfín de pequeños rectangulars áreas método.
"La neta del área comprendida entre el $t=0, y=0, t=x$, y $y=f(t)$"=$\lim_{n\to\infty} \frac{x}{n}\sum \limits_{k=1}^n f(\frac{kx}{n})$
Por lo tanto,
$$\int _0^x {f(t) dt}=\lim_{n\to\infty} \frac{x}{n}\sum \limits_{k=1}^n f(\frac{kx}{n})$$
¿Hay algún otro método de análisis (tales como la transformación de los métodos o cualquier otro) para demostrar que la ecuación es correcta?
EDIT:Durante mis intentos de prueba de la igualdad, me he dado cuenta de que la igualdad puede ser demostrado a través de la alimentación de la serie de la expresión de $f(x)$. Yo no pienso de esa manera antes de hacer la pregunta. Me gustaría compartir con ustedes. Es también la bienvenida a sus comentarios acerca de mi enfoque y la espera de sus diferentes métodos de mostrar una prueba a través de otro método.
$ f(x) =f(0)+\frac{f'(0)x}{1!}+\frac{f''(0)x^2}{2!}+.....=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n $
$$\int _0^x {f(t) dt}=\int _0^x(\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} t^n)dt=\sum_{n=0}^{\infty} (\frac{f^{(n)}(0)}{n!}\int _0^x t^n dt)=\sum_{n=0}^{\infty} (\frac{f^{(n)}(0)}{n!}\frac{x^{n+1}}{n+1})$$ $$\int _0^x {f(t) dt}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)x^{n+1}}{(n+1)!}$$ $$(1)$$
$$f(\frac{kx}{n})=\sum_{m=0}^{\infty} \frac{f^{(m)}(0)}{m!} (\frac{kx}{n})^m$$ $$\sum \limits_{k=1}^{n} k^m=\frac{n^{m+1}}{m+1}+a_mn^m+....+a_1n=\frac{n^{m+1}}{m+1}+\sum \limits_{j=1}^m a_jn^j$$ where $a_j$ son constantes. Más información acerca de la suma http://en.wikipedia.org/wiki/Summation
$$\lim_{n\to\infty} \frac{x}{n}\sum \limits_{k=1}^n f(\frac{kx}{n})=\lim_{n\to\infty} \frac{x}{n}\sum \limits_{k=1}^n \sum_{m=0}^{\infty} \frac{f^{(m)}(0)}{m.} (\frac{kx}{n})^m=\lim_{n\to\infty} \frac{x}{n}\sum_{m=0}^{\infty} \frac{x^m}{n^m} \frac{f^{(m)}(0)}{m.} \sum \limits_{k=1}^n k^m=\lim_{n\to\infty} \frac{x}{n}[f(0)n+\frac{f'(0)x}{n 1!}(\frac{n^2}{2}+\frac{n}{2})+ \frac{f"(0)x^2}{n^2 2!}(\frac{n^3}{3}+\frac{n^2}{2}+\frac{n}{6})+\frac{f"'(0)x^3}{n^3 3!}(\frac{n^4}{4}+\frac{n^3}{2}+\frac{n^2}{4})+\frac{f^{(4)}(0)x^4}{n^4 4!}(\frac{n^5}{5}+\frac{n^4}{2}+\frac{n^3}{3}-\frac{n}{30})+...... ]= \lim_{n\to\infty} [f(0)x+\frac{f'(0)x^2}{n^2 1!}(\frac{n^2}{2}+\frac{n}{2})+ \frac{f"(0)x^3}{n^3 2!}(\frac{n^3}{3}+\frac{n^2}{2}+\frac{n}{6})+\frac{f"'(0)x^4}{n^4 3!}(\frac{n^4}{4}+\frac{n^3}{2}+\frac{n^2}{4})+\frac{f^{(4)}(0)x^5}{n^5 4!}(\frac{n^5}{5}+\frac{n^4}{2}+\frac{n^3}{3}-\frac{n}{30})+...... ]= [f(0)x+\frac{f'(0)x^2}{ 2!}+ \frac{f"(0)x^3}{ 3!}+\frac{f"'(0)x^4}{ 4!}+\frac{f^{(4)}(0)x^5}{ 5!}+...... ]$$
$$\lim_{n\to\infty} \frac{x}{n}\sum \limits_{k=1}^n f(\frac{kx}{n})=\sum_{m=0}^{\infty} \frac{f^{(m)}(0)x^{m+1}}{(m+1)!}$$ $$(2)$$
La ecuación de $(1)$ y la ecuación de $(2)$ son iguales el uno al otro. La prueba se ha completado.