\begin{align} z(s + \Delta s, t) &= f(x(s + \Delta s, t),y(s + \Delta s, t)) \& \approx f \left(x(s,t) + \frac{\partial x(s,t)}{\partial s} \Delta s,y(s,t) + \frac{\partial y(s,t)}{\partial s} \Delta s \right) \ \tag{%#%#%}&\approx f(x(s,t),y(s,t)) + \frac{\partial f(x(s,t),y(s,t))}{\partial x} \frac{\partial x(s,t)}{\partial s} \Delta s \& \qquad \qquad \qquad \quad+ \frac{\partial f(x(s,t),y(s,t))}{\partial y}\frac{\partial y(s,t)}{\partial s} \Delta s. \end {Alinee el}
Comparando esto con\begin{equation} z(s + \Delta s, t) \approx z(s,t) + \frac{\partial z(s,t)}{\partial s} \Delta s \end{equation} descubrimos que\begin{equation} \frac{\partial z(s,t)}{\partial s} = \frac{\partial f(x(s,t),y(s,t))}{\partial x} \frac{\partial x(s,t)}{\partial s} + \frac{\partial f(x(s,t),y(s,t))}{\partial y}\frac{\partial y(s,t)}{\partial s} . \end{equation}
El paso clave es en línea ($\spadesuit$), donde utilizamos la aproximación\begin{equation} f(x + \Delta x, y + \Delta y) \approx f(x,y) + \frac{\partial f(x,y)}{\partial x} \Delta x + \frac{\partial f(x,y)}{\partial y}{\Delta y}. \end{equation}