Para $$\lim _{x \to \infty} \frac{x+\sin x}{x+2 \sin x}$$ if I solve it by dividing by $x$ and I get the correct answer which is $1$ but when I apply L-Hopital rule for $\infty /\infty$ form then I get answer as limit does not exist because we cannot say anything about $$\lim _{x \to \infty} \frac{1+\cos x}{1+2 \cos x}$$
¿Por qué L-Hospital de la regla de error para este caso? O es algo incorrecto en mi enfoque?