Encontrar el límite de :
$$\lim_{ n \to \infty }(1-\tan^2\frac{x}{2})(1-\tan^2\frac{x}{4})(1-\tan^2\frac{x}{8})...(1-\tan^2\frac{x}{2^n})=?$$
Yo :
$$1-\tan^2 y = \frac{2\tan y }{\tan(2y)}$$
$$\lim_{ n \to \infty }\left( \frac{2\tan\frac{x}{2} }{\tan(x)}\right)( \frac{2\tan\frac{x}{4} }{\tan(\frac{x}{2})})( \frac{2\tan\frac{x}{8} }{\tan(\frac{x}{4})})...( \frac{2\tan\frac{x}{2^n} }{\tan(\frac{x}{2^{n-1}})})=?$$
Ahora?