$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,{\rm Li}_{#1}} \newcommand{\norm}[1]{\left\vert\left\vert\, #1\,\right\vert\right\vert} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ \begin{align}&\color{#66f}{\large\int_{0}^{1}{\ln\pars{x} \over 1 + x^{2}}\,\dd x} =\Re\int_{0}^{1}{\ln\pars{x} \over 1 - \ic x}\,\dd x =\Im\int_{0}^{1}{\ln\pars{-\ic\bracks{\ic x}} \over 1 - \ic x} \,\pars{\ic\,\dd x} =\Im\int_{0}^{\ic}{\ln\pars{-\ic x} \over 1 - x}\,\dd x \\[5mm]&=\Im\bracks{\left.\vphantom{\LARGE A} -\ln\pars{1 - x}\ln\pars{-\ic x}\right\vert_{\, 0}^{\,\ic} +\int_{0}^{\ic}{\ln\pars{1 - x} \over x}\,\dd x} =-\,\Im\int_{0}^{\ic}\Li{2}'\pars{x}\,\dd x =-\,\Im\Li{2}\pars{\ic} \\[5mm]&=-\,\Im\sum_{n\ =\ 1}^{\infty}{\ic^{n} \over n^{2}} =-\,\Im\sum_{n\ =\ 1}^{\infty}{\ic^{2n - 1} \over \pars{2n - 1}^{2}} =-\,\Im\bracks{% \ic^{-1}\sum_{n\ =\ 1}^{\infty}{\pars{-1}^{n} \over \pars{2n - 1}^{2}}} =-\sum_{n\ =\ 0}^{\infty}{\pars{-1}^{n} \over \pars{2n + 1}^{2}} \\[5mm]&=\color{#66f}{\Large-G} \end{align}
donde $\ds{G}$ es el Constante catalana .
1 votos
¿Está permitida la integración de contornos? ¿O sólo los métodos reales?
8 votos
Esta integral se ha hecho muchas veces en este sitio. Taylor expande el denominador, utiliza el hecho de que $$\int_0^1 dx \, x^{2 k} \log{x} = -\frac1{(2 k+1)^2}$$ y la suma.
0 votos
No creo que sea necesario.
0 votos
Esta integral da la constante catalana