$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\down}{\downarrow}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\mitad}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}
&\color{#00f}{\large\int_{0}^{\infty}\ln^{2}\pars{x}\sin\pars{x^{2}}\,\dd x}
=\int_{0}^{\infty}\ln^{2}\pars{x^{1/2}}\sin\pars{x}\,\half\,x^{-1/2}\dd x
\\[3mm]&={1 \over 8}\int_{0}^{\infty}x^{-1/2}\ln^{2}\pars{x}\sin\pars{x}\,\dd x
\\[3mm]&={1 \over 8}\lim_{\mu \to -1/2}\partiald[2]{}{\mu}
\Im\int_{0}^{\infty}x^{\mu}\expo{\ic x}\,\dd x
=
{1 \over 8}\lim_{\mu \to -1/2}\partiald[2]{}{\mu}
\Im\int_{0}^{\infty}\pars{\ic x}^{\mu}\expo{-x}\ic\,\dd x
\\[3mm]&=
{1 \over 8}\lim_{\mu \to -1/2}\partiald[2]{}{\mu}
\Re\bracks{\expo{\ic\pi\mu/2}\int_{0}^{\infty}x^{\mu}\expo{-x}\,\dd x}
={1 \over 8}\lim_{\mu \to -1/2}\partiald[2]{}{\mu}
\Re\bracks{\expo{\ic\pi\mu/2}\Gamma\pars{\mu + 1}}
\\[3mm]&=\color{#00f}{\large{\root{2\pi} \over 64}\bracks{\pi + 2\Psi\pars{1/2}}^{2}}
\approx 0.0241614
\end{align}
Observe que $\Psi\pars{1/2} = -\gamma - 2\ln\pars{2}$ de manera tal que un resultado equivalente es
$$
\color{#00f}{\large{1 \over 32}\,\raíz{\pi \over 2}\bracks{2\gamma \pi + \ln\pars{16}}^{2}}
$$
que es el resultado habitual de lo simbólico software.