$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{I\equiv\int_{0}^{\infty}\ln^{2}\pars{x}\,{1 + x^{2} \over 1 + x^{4}}\,\dd x
={3 \pi^{3} \más de 16 \raíz{2}}}$
\begin{align}
I&=-\Im\bracks{\pars{1 - \ic}
\int_{0}^{\infty}{\ln^{2}\pars{x} \over x^{2} + \ic}\,\dd x}
\\[3mm]&=-\,\Im\bracks{\pars{1 - \ic}
\lim_{\mu \to 0}\partiald[2]{}{\mu}\int_{0}^{\infty}
x^{\mu}\int_{0}^{\infty}\expo{-\pars{x^{2} + \ic}\xi}\,\dd\xi\,\dd x}
\\[3mm]&=-\,\Im\bracks{\pars{1 - \ic}
\lim_{\mu \to 0}\partiald[2]{}{\mu}\int_{0}^{\infty}\expo{-\ic\xi}\
\overbrace{\int_{0}^{\infty}x^{\mu}\expo{-\xi x^{2}}\,\dd x}^{\ds{t \equiv \xi x^{2}\ \imp\ x = \xi^{-1/2}t^{1/2}}}\ \dd\xi}
\\[3mm]&=-\,\Im\bracks{\pars{1 - \ic}
\lim_{\mu \to 0}\partiald[2]{}{\mu}\int_{0}^{\infty}\expo{-\ic\xi}\
\int_{0}^{\infty}\xi^{-\mu/2}\ t^{\mu/2}\expo{-t}\xi^{-1/2}\,\half\,t^{-1/2}\,\dd t\,
\dd\xi}
\\[3mm]&=-\,\half\,\Im\bracks{\pars{1 - \ic}
\lim_{\mu \to 0}\partiald[2]{}{\mu}\int_{0}^{\infty}
\xi^{-\pars{\mu + 1}/2}\expo{-\ic\xi}
\int_{0}^{\infty}t^{\pars{\mu - 1}/2}\expo{-t}\,\dd t\,\dd\xi}
\\[3mm]&=-\,\half\,\Im\bracks{\pars{1 - \ic}
\lim_{\mu \to 0}\partiald[2]{}{\mu}\Gamma\pars{{\mu \over 2} + \half}
\color{#c00000}{\int_{0}^{\infty}\xi^{-\pars{\mu + 1}/2}\expo{-\ic\xi}\,\dd\xi}}
\tag{1}
\end{align}
donde $\ds{\Gamma\pars{z}}$ es la
La Función Gamma.
También,
\begin{align}
&\overbrace{%
\color{#c00000}{\int_{0}^{\infty}\xi^{-\pars{\mu + 1}/2}\expo{-\ic\xi}\,\dd\xi}}
^{\ds{t \equiv \ic\xi\quad\imp\quad\xi = -\ic t = \expo{-\ic\pi/2}t}}
=\int_{0}^{\infty\ic}\pars{\expo{-\ic\pi/2}t}^{-\pars{\mu + 1}/2}
\expo{-t}\,\pars{-\ic\,\dd t}
\\[3mm]&=-\ic\expo{\ic\pi\pars{\mu + 1}/4}\int_{0}^{\infty}t^{-\pars{\mu + 1}/2}
\expo{-t}\,\dd t=-\ic\expo{\ic\pi\pars{\mu + 1}/4}\Gamma\pars{\half - {\mu \over 2}}
\end{align}
La expresión de $\pars{1}$ es reducir a:
\begin{align}
I&=-\,\half\,\Im\braces{\pars{1 - \ic}
\lim_{\mu \to 0}\partiald[2]{}{\mu}\Gamma\pars{{\mu \over 2} + \half}
\bracks{-\ic\expo{\ic\pi\pars{\mu + 1}/4}\Gamma\pars{\half - {\mu \over 2}}}}
\\[3mm]&=\half\,\Im\bracks{\pars{1 + \ic}
\lim_{\mu \to 0}\partiald[2]{}{\mu}\expo{\ic\pi\pars{\mu + 1}/4}\,
{\pi \over \sin\pars{\pi\bracks{\mu/2 + 1/2}}}}
\end{align}
donde hemos utilizado Euler Reflexión Fórmula ${\bf\mbox{6.1.17}}$.
\begin{align}
I&={\root{2} \over 2}\,\pi\,
\lim_{\mu \to 0}\partiald[2]{}{\mu}\bracks{\cos\pars{\pi\mu \over 4}
\sec\pars{\pi\mu \over 2}}
={\pi \over \root{2}}\pars{-\,{\pi^{2} \over 16} + {\pi^{2} \over 4}}
\end{align}
$$\color{#00f}{\large%
I\equiv\int_{0}^{\infty}\ln^{2}\pars{x}\,{1 + x^{2} \over 1 + x^{4}}\,\dd x
={3 \pi^{3} \más de 16 \raíz{2}}}
$$