Para su enfoque:
Definir la secuencia $(f_n)_{n=1}^{\infty}$ por $f_n:(0,1) \to \mathbb{R}$ s.t. $f_n(x) = \left(\displaystyle\sum_{k=1}^n x^{2k}\right) \ln x $ y definir $f:(0,1) \to \mathbb{R}$ s.t. $f(x) = \dfrac{\ln x}{1-x^2}$ .
Demuestra que $f_n \to f$ uniformemente .
Entonces $\displaystyle\int_0^1 f_n \to \int_0^1 f$ para que $\displaystyle\int_0^1 f(x) dx = \displaystyle\lim_{n\to \infty} \displaystyle\int_0^1 f_n(x) dx$
(como explica Cameron)
Enfoque alternativo:
Elige la rama del logaritmo que corresponde a tomar un corte a lo largo de $\mathbb{R}_{\geq 0}$ y considerar $I = \displaystyle\oint _C \dfrac{(\log z)^2}{1-z^2}dz$ a lo largo del contorno $C$ definido como $\gamma_+ \cup\gamma_R \cup\gamma_- \cup\gamma_{\epsilon}$ (recorrido en sentido contrario a las agujas del reloj) donde:
$ \gamma_+ = \{z\in \mathbb{C} : z=x, \ \epsilon \leq x \leq R \} \ \ \ \ \ \ $ $\gamma _R = \{z\in \mathbb{C} : z=Re^{i\theta},\ 0<\theta<2\pi\}$
$\gamma_- = \{z\in \mathbb{C}: z=te^{2\pi i}, \ R\geq t\geq \epsilon \} \ \ \ \ \ \ $ $\gamma_{\epsilon} = \{z\in \mathbb{C} : z=\epsilon e^{i\theta}, \ 2\pi >\epsilon > 0\}$
Por el teorema del residuo, $I = 2\pi i \cdot \dfrac{-\pi^2}{-2e^{i\pi}} = \dfrac{i\pi^3}{e^{i\pi}}$ .
Tomando $R\to \infty, \epsilon \to 0$ Observando que las contribuciones de la integración a lo largo de $\gamma_{\epsilon}$ y $\gamma_R$ son infinitamente pequeños en el límite, también tenemos:
$\begin{eqnarray*} I&=& \displaystyle\int_0^{\infty} \dfrac{(\log x)^2}{1-x^2} dx - \displaystyle\int_0^{\infty} \dfrac{(\log x - 2\pi i)^2}{1-x^2} dx \\ &=& 4\pi i \displaystyle\int_0^{\infty} \dfrac{\log x}{1-x^2} dx + 4\pi ^2 \cdot \underbrace{\text{PV} \left(\displaystyle\int_0^{\infty} \dfrac{1}{1-x^2} dx\right)}_{=\ 0}\\ &=&4\pi i \left(\displaystyle\int _0^1 \dfrac{\log x}{1-x^2}dx +\displaystyle\int _1^{\infty} \dfrac{\log x}{1-x^2}dx \right) \\ &=& 4\pi i \left(\displaystyle\int _0^1 \dfrac{\log x}{1-x^2}dx +\displaystyle\int _1^0 \dfrac{\log \frac{1}{x}}{1-\frac{1}{x^2}}\cdot -\dfrac{1}{x^2} dx \right) \\ &=& 8\pi i \displaystyle\int _0^1 \dfrac{\log x}{1-x^2}dx \end{eqnarray*}$
Por lo tanto, $\displaystyle\int _0^1 \dfrac{\log x}{1-x^2}dx = \dfrac{-i\pi ^3}{8\pi i} = -\dfrac{\pi ^2}{8}$