Dejar
$$I_{1}=\int_{0}^{\dfrac{\pi}{2}}\cos{(\sin{x})}dx,I_{2}=\int_{0}^{\dfrac{\pi}{2}}\sin{(\sin{x})}dx$$
$I_{1}$ y $I_{2}$ ¿cuál es más grande? Espero ver más métodos agradables, gracias
solución 1 :
nota esto $$\int_{0}^{\dfrac{\pi}{2}}f(\sin{x})dx=\int_{0}^{\dfrac{\pi}{2}}f(\cos{x})dx$$
así que $$I_{2}=\int_{0}^{\dfrac{\pi}{2}}\sin{(\sin{x})}dx=\int_{0}^{\dfrac{\pi}{2}}\sin{(\cos{x})}dx$$
desde $$\sin{(\cos{x})}<\cos{x}<\cos{(\sin{x})}$$ porque $$\sin{x}<x$$ así que $$I_{1}>I_{2}$$
solución 2 $$\cos{(\sin{x})}>1-\dfrac{\sin^2{x}}{2},\sin{(\sin{x})}\le x$$
así que $$\cos{(\sin{x})}-\sin{(\sin{x})}>1-\dfrac{\sin^2{x}}{2}-x$$ así que $$I_{1}-I_{2}>\int_{0}^{\dfrac{\pi}{2}}\left(1-x-\dfrac{\sin^2{x}}{2}\right)dx>0$$