$$\int_{0}^{\infty}e^{-1\over x}\sin\left({1\over x}\right)\ln(x){\mathrm dx\over x^{4n+1}}=(-1)^{n+1}\pi F(n)\tag1$$
$n\ge1$
$F(1)={3\over 8}$
$F(2)={315\over 4}$
$F(3)=155925$
Parece que no puedo entender el patrón $F(n)$
Cómo podemos evaluar la forma cerrada para $(1)?$
$$\ln(x)=\sum_{n=1}^{\infty}{1\over n}\left({x-1\over x}\right)^n$$
$$\sum_{n=1}^{\infty}{1\over m}\int_{0}^{\infty}e^{-1\over x}\sin\left({1\over x}\right)(x-1)^m{\mathrm dx\over x^{4n+m+1}}\tag2$$
$u={1\over x}$
$$\sum_{n=1}^{\infty}{1\over m}\int_{0}^{\infty}e^{-u}\sin(u)(u^{-1}-1)^m{\mathrm du\over (u^{-1})^{4n+m-1}}\tag3$$
$$\sum_{m=1}^{\infty}{1\over m}\int_{0}^{\infty}e^{-u}\sin(u)(1-u)^m{\mathrm du\over u^{1-4n}}\tag4$$
$$\sum_{m=1}^{\infty}{1\over m}\sum_{k=0}^{m}(-1)^k{m\choose k}\int_{0}^{\infty}e^{-u}\sin(u){\mathrm du\over u^{1-4n-k}}\tag5$$
$$\boxed{\int_{0}^{+\infty} x^{4n-1} e^{-x^n}\sin(x^n)\log(x)\,dx=\color{blue}{-\frac{3\pi}{8n^{2}}}.} $$
sligth variación a
$$\boxed{\int_{0}^{+\infty} x^{4n-1} e^{-x}\sin(x)\log(x)\,dx=\color{blue}{\pi(-1)^n\frac{(4n-1)!}{4^{n+1}}}.} $$