$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Con el $\ds{\ln}$ corte de rama $\ds{\pars{\left.\ln\pars{z}\right\vert_{\ z\ \not=\ 0} = \ln\pars{\verts{z}} + \,\mrm{arg}\pars{z}\ic\,,\ -\pi < \,\mrm{arg}\pars{z} < \pi}}$ Evaluaré $\ds{\oint_{\mrm{C}}{\ln\pars{z} \over z^{4} - 1}\,\dd z}$ en un cuarto de circunferencia en el primer cuadrante:
\begin{align} \int_{0}^{\infty}{\ln\pars{x} \over x^{4} - 1}\,\dd x & \,\,\,\stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\sim}\,\,\, -\,\Re\int_{\infty}^{1 + \epsilon} {\ln\pars{y} + \pi\ic/2 \over y^{4} - 1}\,\ic\,\dd y - \Re\int_{0}^{-\pi}{\ln\pars{\ic + \epsilon\expo{\ic\theta}} \over \pars{\ic + \epsilon\expo{\ic\theta}}^{4} - 1} \,\epsilon\expo{\ic\theta}\ic\,\dd\theta \\[3mm] & -\,\Re\int_{1 - \epsilon}^{0} {\ln\pars{y} + \pi\ic/2 \over y^{4} - 1}\,\ic\,\dd y \\[1cm] & \stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\sim}\,\,\, -\,{1 \over 2}\,\pi\,\mrm{P.V.}\int_{0}^{\infty}{\dd y \over y^{4} - 1} + \Re\int_{-\pi}^{0}{\pi\ic/2 \over 4i^{3}\epsilon\expo{\ic\theta}}\, \epsilon\expo{\ic\theta}\ic\,\dd\theta \\[5mm] & \stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\to}\,\,\, -\,{1 \over 2}\,\pi\,\lim_{\delta \to 0^{+}} \bracks{\int_{0}^{1 - \delta}{\dd y \over y^{4} - 1} + \int_{1 + \delta}^{\infty}{\dd y \over y^{4} - 1}} \\[5mm] & = -\,{1 \over 2}\,\pi\,\lim_{\delta \to 0^{+}} \bracks{\int_{0}^{1 - \delta}{\dd y \over y^{4} - 1} + \int_{1/\pars{1 + \delta}}^{0}{\pars{-1/y^{2}}\dd y \over 1/y^{4} - 1}} \\[5mm] & = -\,{1 \over 2}\,\pi\,\lim_{\delta \to 0^{+}} \bracks{\int_{0}^{1 - \delta}{\dd y \over y^{4} - 1} - \int_{0}^{1/\pars{1 + \delta}}{y^{2} \over y^{4} - 1}\,\dd y} \\[5mm] & = -\,{1 \over 2}\,\pi\,\lim_{\delta \to 0^{+}} \bracks{\int_{0}^{1 - \delta}{1 - y^{2} \over y^{4} - 1}\,\dd y - \int_{1 - \delta}^{1/\pars{1 + \delta}}{y^{2} \over y^{4} - 1}\,\dd y} = {1 \over 2}\,\pi\int_{0}^{1}{\dd y \over y^{2} + 1} \\[5mm] & = \bbx{\phantom{^{2}}\pi^{2} \over 8} \end{align} Por simplicidad, he omitido la integral a lo largo del arco que se desvanece a medida que el radio del arco $\ds{R \to \infty}$ . De hecho, como $\ds{R \to \infty}$ la magnitud de dicha integral se comporta como $\ds{\pars{\pi/2}\ln\pars{R}/R^{3}}$ .
Tenga en cuenta que
\begin{align} &0 < \verts{\int_{1 - \delta}^{1/\pars{1 + \delta}}{y^{2} \over y^{4} - 1} \,\dd y} < \verts{{1 \over 1 + \delta} - \pars{1 - \delta}} {1/\pars{1 + \delta}^{2} \over 1 - \pars{1 - \delta}^{2}} \,\,\,\stackrel{\mrm{as}\ \delta\ \to\ 0^{+}}{\to}\,\,\,{\large 0} \end{align}