Puede observarse que,
$$A(s) := \sum_{n=1}^\infty \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)}$$
$$B(s) := \sum_{n=1}^\infty \frac{|\mu(n)|}{n^s} = \frac{\zeta(s)}{\zeta(2s)}$$
$$C(s) := \sum_{n=1}^\infty \frac{(-1)^{n+1}\mu(n)}{n^s} = \frac{2^s+1}{2^s-1}\frac{1}{\zeta(s)}$$
P: ¿Es cierto que,
$$D(s) := \sum_{n=1}^\infty \frac{(-1)^{n+1}|\mu(n)|}{n^s} = \frac{2^s-1}{2^s+1}\frac{\zeta(s)}{\zeta(2s)}$$ por lo tanto, $$A(s)\,B(s) = C(s)\,D(s) = \frac{1}{\zeta(2s)}?$$