Primero: $~\displaystyle 2\int_0^{\tfrac{\pi}{12}} \log(\tan(3x))dx=\int_0^{\tfrac{\pi}{12}} \log(\tan(x))dx\qquad(1)$
Prueba:
Que $I=\displaystyle \int_0^{\tfrac{\pi}{12}} \log(\tan(3x))dx$
$\tan(3x)=\tan(x)\tan\big(\dfrac{\pi}{3}-x\big)\tan\big(\dfrac{\pi}{3}+x\big)$
$\displaystyle I= \int_0^{\tfrac{\pi}{12}} \log(\tan(x))dx+\int_0^{\tfrac{\pi}{12}} \log\Big(\tan\Big (\dfrac{\pi}{3}-x\Big)\Big)dx+\int_0^{\tfrac{\pi}{12}} \log\Big(\tan\Big (\dfrac{\pi}{3}-x\Big)\Big)dx$
$\displaystyle I=\int_0^{\tfrac{\pi}{12}} \log(\tan(x))dx+\int_{\tfrac{\pi}{3}}^{\tfrac{5\pi}{12}} \log(\tan(x))dx+\int_{\tfrac{\pi}{4}}^{\tfrac{\pi}{3}} \log(\tan(x))dx$
$\displaystyle I=\int_0^{\tfrac{\pi}{12}} \log(\tan(x))dx+\int_{\tfrac{\pi}{4}}^{\tfrac{5\pi}{12}} \log(\tan(x))dx$
$\displaystyle I=\int_0^{\tfrac{\pi}{12}} \log(\tan(x))dx-\int_{\tfrac{\pi}{4}}^{\tfrac{\pi}{12}} \log\Big(\tan\Big (\dfrac{\pi}{2}-x\Big)\Big)dx$
$\tan\Big (\dfrac{\pi}{2}-x\Big)=\dfrac{1}{\tan(x)}$
Entonces: $~\displaystyle I=\int_0^{\tfrac{\pi}{12}} \log(\tan(x))dx+\int_{\tfrac{\pi}{4}}^{\tfrac{\pi}{12}}\log(\tan(x))dx$
$\displaystyle I=2\int_0^{\tfrac{\pi}{12}} \log(\tan(x))dx-\int_0^{\tfrac{\pi}{4}} \log(\tan(x))dx$
$\displaystyle I=2\int_0^{\tfrac{\pi}{12}} \log(\tan(x))dx-3\int_0^{\tfrac{\pi}{12}} \log(\tan(3x))dx$
$\displaystyle I=2\int_0^{\tfrac{\pi}{12}} \log(\tan(x))dx-3I$
$\displaystyle 2I=\int_0^{\tfrac{\pi}{12}}\log(\tan(x))dx$
Ahora realice el cambio de la variable $u=3x$ en el miembro izquierdo de $(1)$:
$\displaystyle 2\int_0^{\tfrac{\pi}{12}} \log(\tan(3x))dx=\dfrac{2}{3} \int_0^{\tfrac{\pi}{4}} \log(\tan(x))dx$
Desde $~\displaystyle G=-\int_0^{\tfrac{\pi}{4}} \log(\tan(x))dx~$ y $~\displaystyle \int_0^{\tfrac{\pi}{12}} \log(\tan(x))dx=-\dfrac{2}{3}G$.
$($ Prueba de encuentran en: constante de representaciones de Catalan, David Bradley, $2001)$.