$\int_0^\infty x^{a-1}(1-x)^{b-1}e^{t-cx}~dx$
$=e^t\int_0^\infty x^{a-1}(1-x)^{b-1}e^{-cx}~dx$
$=e^t\int_0^1x^{a-1}(1-x)^{b-1}e^{-cx}~dx+e^t\int_1^\infty x^{a-1}(1-x)^{b-1}e^{-cx}~dx$
$=e^t\int_0^1x^{a-1}(1-x)^{b-1}e^{-cx}~dx-(-1)^be^t\int_1^\infty x^{a-1}(x-1)^{b-1}e^{-cx}~dx$
$=e^t\int_0^1x^{a-1}(1-x)^{b-1}e^{-cx}~dx-(-1)^be^t\int_0^\infty(x+1)^{a-1}x^{b-1}e^{-c(x+1)}~d(x+1)$
$=e^t\int_0^1x^{a-1}(1-x)^{b-1}e^{-cx}~dx-(-1)^be^{t-c}\int_0^\infty x^{b-1}(x+1)^{a-1}e^{-cx}~dx$
$=\dfrac{e^t\Gamma(a)\Gamma(b)M(a,a+b,-c)}{\Gamma(a+b)}-(-1)^be^{t-c}\Gamma(b)U(b,a+b,c)$ (de acuerdo a http://en.wikipedia.org/wiki/Confluent_hypergeometric_function#Integral_representations)