¿Cómo se puede mostrar
$$\int_0^{\pi} \frac{x\sin x}{1+\cos^2 x} \,\mathrm{d}x = \frac{\pi}{2}\int_0^{\pi} \frac{\sin x}{1+\cos^2 x} \,\mathrm{d}x$$
sin la integración por partes, pero sólo por medio de la sustitución?
¿Cómo se puede mostrar
$$\int_0^{\pi} \frac{x\sin x}{1+\cos^2 x} \,\mathrm{d}x = \frac{\pi}{2}\int_0^{\pi} \frac{\sin x}{1+\cos^2 x} \,\mathrm{d}x$$
sin la integración por partes, pero sólo por medio de la sustitución?
Para cualquier integrante de la forma
$$I = \int_0^{\pi} x f(\sin x) \mathrm{d}x $$
desde $\sin(\pi-x) = \sin(x)$, mediante la sustitución de $x = \pi-u$ o $u=\pi- x$, uno puede reducir esta integral para el siguiente uso
al $x=0, u=\pi$, y al $x=\pi, u=0$, y también se $ \mathrm{d}x = \mathrm{-d}u$
$$ \begin{align*} I = \int_0^{\pi} (\pi - u) f(\sin u) \mathrm{d}u &= \pi \int_0^{\pi} f(\sin u) \mathrm{d}u - \int_{\pi}^{0} u f(\sin u) \mathrm{(-d}u) \\ &= \pi \int_0^{\pi} f(\sin u) \mathrm{d}u - \int_0^{\pi} u f(\sin u) \mathrm{d}u \\ &= \pi \int_0^{\pi} f(\sin u) \mathrm{d}u - I\\ 2I &= \pi \int_0^{\pi} f(\sin u) \mathrm{d}u\\ I & = \frac{\pi}{2}\int_0^{\pi} f(\sin u) \mathrm{d}u = \frac{\pi}{2}\int_0^{\pi} f(\sin x) \mathrm{d}x \tag{A} \end{align*} $$
Se aplican $(A)$ $\displaystyle{f(\sin x) = \frac{\sin x}{2-\sin^2 x} = \frac{\sin x}{1+\cos^2 x}}$
Aunque no fue solicitado, previo aviso ¿cuál es el valor de la integral
mediante la sustitución de más $\cos x = t, -\sin x \mathrm{d}x = \mathrm{d}t \hspace{5pt} cos(\pi) = -1, cos(0) = 1$
$$ \begin{align*} \frac{\pi}{2}\int_0^{\pi} \frac{\sin x}{1+\cos^2 x} \,\mathrm{d}x &= \frac{\pi}{2} \int_{1}^{-1} \frac{\mathrm{-d}t}{1+t^2}\\ &= \frac{\pi}{2} \int_{-1}^{1} \frac{\mathrm{d}t}{1+t^2}\\ &= \frac{\pi}{2} \left( \tan^{-1}(1) - \tan^{-1}(-1) \right) \\ &= \frac{\pi}{2} \left( \frac{\pi}{4} - \frac{-\pi}{4} \right) = \frac{\pi}{2} \left(\frac{\pi}{2}\right) = \frac{{\pi}^2}{4}\\ \end{align*} $$
I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.