5 votos

Forma equivalente de continum hipótesis

La hipótesis del continuo afirma que

20=120=1

Y Cantor equivalente como:

"No hay ningún subconjunto incontables A R tal que |A|<R."

¿Por qué estas dos declaraciones son equivalentes?

9voto

casperOne Puntos 49736

Estoy asumiendo que usted sabe que |R|=20, lo que puede ser probado por mirar binario expansiones de los números en [0,1] (descontando countably muchos números con que no es único de las expansiones).

El cardenal 1 es, por definición, el menor cardinal mayor que 0, lo que significa que no hay ningún conjunto de A tal que 0<|A|<1. Así, en particular, 201.

En la otra dirección, si 1<20=|R|, entonces eso significa que hay una inyección de f:1R, y el establecimiento A a medida que el rango de f,AR, e 0<|A|=1<|R|.

Así, suponiendo que no hay ningún tipo de conjuntos de A, también tenemos 120, y asumiendo el axioma de elección, esto implica 1=20.

4voto

DanV Puntos 281

Suponiendo que el axioma de elección, cada dos cardenales son comparables. En particular, cualquiera de las 120 o 120.

Desde 1 es el menos incontables cardenal, y 20 es incontable por la diagonal argumento, se desprende que no es necesariamente el caso de que 120. Por lo que la hipótesis continua es equivalente a decir que el 20=1, de lo contrario existe un conjunto de tamaño 1, casi por definición,1<20, que es un intermedio entre el NR.

Tenga en cuenta, sin embargo, que el axioma de elección es esencial aquí. Es posible que el axioma de elección falla, no hay intermedio entre cardenales NR, pero 120 (en cuyo caso no son incomparables).

2voto

Cagri Puntos 61

1 es la menos innumerables cardenal y |R|=20. Decir que no hay ningún conjunto incontable con cardinalidad menor que R es precisamente decir que |R| es el cardenal menos innumerables; es decir, 20=1.

0voto

Michael Hardy Puntos 128804

Varias respuestas, ahora decir 1 es el menos incontables cardenal o que es el siguiente el cardenal después de 0. Podríamos recordar la definición de volver a Cantor, quien introdujo la notación:

1 es la cardinalidad del conjunto de todos los contables de los números ordinales.

Si el axioma de elección se mantiene, entonces uno puede mostrar que todos infinito cardenales son alephs, y empezar con 0, 1, 2, etc., con nada entre alephs con índices consecutivos.

Por lo tanto, si no hay nada entre el020,20=1, pero de lo contrario 20>1.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X