16 votos

Cómo probar: $\sqrt{1!\sqrt{2!\sqrt{3!\sqrt{\cdots\sqrt{n!}}}}} <3$

De hecho inicialmente quería demostrar %#% $ #%

Que por la aceptada respuesta aquí no es cierto.

@Barry Cipra me aconsejó esta pregunta en un post diferente: Cómo puedo ahora demostrar que: $$\sqrt{1!\sqrt{2!\sqrt{3!\sqrt{\cdots\sqrt{n!}}}}} <2$ $

Tenga en cuenta que las respuestas aquí no proporcionan una estimación de esta secuencia

¿Puede alguien tiene alguna idea?

13voto

guest Puntos 1

@BarryCipra ha proporcionado este límite aquí: $$\log\left(\sqrt{1!\sqrt{2!\sqrt{\ldots\sqrt{n!}}}}\right)\to\log1+{1\over2}\log2+{1\over4}\log3+{1\over8}\log4+\cdots$$ We can write the RHS as $$\frac12\log2+\frac14\log2+\frac14\log\frac32+\frac18\log2+\frac18\log\frac42+...$$ or $$\log2+\frac14\sum_{n=0}^\infty\frac1{2^n}\log\left(\frac{n+3}2\right)$$ since $\frac12+\frac14+\frac18+...=1$. Now as $$\log\left(\frac{n+3}2\right)<1.2^{n-2.39}$$ by Desmos, $$\text{RHS}<\log2+\frac14\sum_{n=0}^\infty\frac{1.2^{n-2.39}}{2^n}=\log2+\frac1{4\cdot1.2^{2.39}}\sum_{n=0}^\infty0.6^n$$ and by the geometric series with $a=1$ and $r=0.6$, $$\text{RHS}<\log2+\frac1{4\cdot1.2^{2.39}}\cdot2.5=1.097...$$ Hence $$\boxed{\sqrt{1!\sqrt{2!\sqrt{\ldots\sqrt{n!}}}}<e^{1.097...}=2.996...<3}$$ como se desee.

12voto

timon92 Puntos 805

\begin{align*} \sqrt{1!\sqrt{2!\sqrt{3!\sqrt{\cdots\sqrt{n!}}}}} & = 2^{1/4+1/8+1/16+\ldots+1/2^n} \cdot 3^{1/8+1/16+1/32+\ldots+1/2^n}\cdot \ldots \cdot n^{1/2^n} \\ & < 2^{1/2}\cdot 3^{1/4} \cdot 4^{1/8} \cdot \ldots \cdot n^{1/2^{n-1}} \\ & = \sqrt{2\sqrt{3\sqrt{\cdots\sqrt{n}}}} \\ &<3\end{align*} la última desigualdad se comprobó aquí.

9voto

Joe Gauterin Puntos 9526

Para cualquier $n > 0$, tenemos

$$s_n \stackrel{def}{=} \log\left(\sqrt{1!\sqrt{2!\sqrt{3!\sqrt{\cdots\sqrt{n!}}}}}\right) = \sum_{k=1}^n \frac{\log(k!)}{2^k} = \sum_{k=1}^n \frac{1}{2^k}\sum_{j=1}^k\log(j) $$ Recordar que para cualquier función de $f(z)$ con poder serie representación $\sum\limits_{k=0}^\infty a_k z^k$,, la función $\frac{f(z)}{1-z}$ tiene el poder de la serie representación $\sum\limits_{k=0}^\infty z^k \sum\limits_{j=0}^k a_j$. Aplicar esto a el límite de $s_n$, tenemos

$$\begin{align} s_\infty \stackrel{def}{=} \lim_{n\to\infty} s_n &= \frac{1}{1 - \frac12} \sum_{k=1}^\infty \frac{\log k}{2^k} = \sum_{k=1}^\infty\frac{\log(k+1)}{2^k}\\ &= \sum_{k=1}^\infty\frac{1}{2^k}\sum_{j=1}^k(\log(j+1)-\log(j)) = \frac{1}{1 - \frac12} \sum_{k=1}^\infty\frac{\log(k+1)-\log(k)}{2^k}\\ &= \sum_{k=1}^\infty \frac{1}{2^{k-1}}\log\left(1+\frac1k\right)\\ &= \sum_{k=1}^\infty \frac{1}{k2^{k-1}} + \sum_{k=1}^\infty \frac{1}{2^{k-1}}\left[\log\left(1+\frac1k\right) - \frac1k\right]\\ &= 2\log(2) + \sum_{k=1}^\infty \frac{1}{2^{k-1}}\left[\log\left(1+\frac1k\right) - \frac1k\right] \end{align} $$ Aviso de $\log(1+x) \le x$ todos los $x \in (-1,\infty)$, se puede truncar el segundo de la serie en algún finito $p$ y la vuelta a una cota superior $$ s_\infty \le 2\log(2) + \sum_{k=1}^p \frac{1}{2^{k-1}}\left[\log\left(1+\frac1k\right) - \frac1k\right]$$ Tome $p = 1$, esto se convierte en $s_\infty \le 3\log(2) - 1$. Como resultado,

$$\lim_{n\to\infty} \sqrt{1!\sqrt{2!\sqrt{3!\sqrt{\cdots\sqrt{n!}}}}} = \lim_{n\to\infty} e^{s_n} = e^{s_\infty} \le e^{3\log(2)-1} = \frac{8}{e} \approx 2.943035529371539 < 3$$

Podemos mejorar el obligado por el uso de un mayor $p$. Por ejemplo, si tomamos $p = 3$, obtenemos una nueva enlazado $e^{s_\infty} \le 2.775306746902055$. Esto está dentro del 1% de la correcta límite de $\approx 2.761206841957498$ señalado por los demás en los comentarios.

3voto

Masacroso Puntos 1080

ESBOZO PARA UNA APROXIMACIÓN ANALÍTICA A LA ENLAZADO (demasiado largo para un comentario):

A partir de mi respuesta anterior tenemos que

$$S_n:=\sqrt{1!\sqrt{2!\sqrt{\cdots\sqrt{\text{n}!}}}}=\exp\left(\sum_{j=1}^n\ln j\left(\frac1{2^{j-1}}-\frac1{2^n}\right)\right)\\=\exp\left(\left(\sum_{j=0}^{n-1}\frac{\ln (1+j)}{2^j}\right)-\frac{\ln(n!)}{2^n}\right)$$

Y debido a que $0\le\ln(n!)/2^n\le \ln(n^n)/2^n\le n^2/2^n$

$$S:=\lim_{n\to\infty} S_n=\exp\left(\sum_{k\ge 0}\frac{\ln (k+1)}{2^k}\right)$$

Ahora el uso de la sumación por partes y teniendo en $\Delta g_k=(1/2)^k$ $f_k=\ln(1+k)$ nos encontramos con que $g_k=-(1/2)^{k-1}$, lo que

$$\sum_{k\ge 0}\frac{\ln(1+k)}{2^k}=\left[-\frac{\ln(1+k)}{2^{k-1}}\right]_{k=0}^{k=\infty}+\sum_{k\ge 0}\left(\frac12\right)^k\ln\left(1+\frac1{k+1}\right)\\=\sum_{k\ge 0}\left(\frac12\right)^k\ln\left(1+\frac1{k+1}\right)=\sum_{k\ge 0}\sum_{j\ge 1}\left(\frac12\right)^k(-1)^{j+1}\frac1{j(k+1)^j}\\\le\sum_{j= 1}^{2n+1}\frac{(-1)^{j+1}}{j}\sum_{k\ge 0}\left(\frac12\right)^k\left(\frac1{1+k}\right)^j=2\sum_{j=1}^{2n+1}\frac{(-1)^{j+1}}j{\rm Li}_j(1/2)$$

para todos los $\in\Bbb N$ donde ${\rm Li}_j$ es un polylogarithm. Por lo tanto, teniendo $n=0$ me encontré con el límite superior de $4$.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X