$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $\ds{\sum_{m = 0}^{n}\pars{-1}^{n - m}{n \choose m}{m - 1 \choose \ell}:\ {\large ?}.\qquad\ell \geq 0}$
\begin {align} & \color {#66f}{ \large\sum_ {m = 0}^{n} \pars {-1}^{n - m}{n \choose m} {m - 1 \choose \ell }} \\ [3mm]&= \pars {-1}^{n} \sum_ {m = 0}^{n} \pars {-1}^{m}{n \choose m} \oint_ {0\ <\ \verts {z}\a =\ a\a <\ 1}{} \pars {1 + z}^{m - 1} \over z^{ \ell + 1}} \,{ \dd z \over 2 \pi\ic } \\ [3mm]&= \pars {-1}^{n} \oint_ {0\ <\ \verts {z}\a =\a\a <\a1} {1 \over z^{ \ell + 1} \pars {1 + z}} \sum_ {m = 0}^{n}{n \choose m} \pars {-z - 1}^{m}\N- \dd z \over 2 \pi\ic } \\ [3mm]&= \pars {-1}^{n} \oint_ {0\ <\ \verts {z}\a =\a\a <\a1} {1 \over z^{ \ell + 1} \pars {1 + z}} \bracks {1 + \pars {-z - 1}^{{n}}, { \dd z \over 2 \pi\ic } \\ [3mm]&= \oint_ {0\ <\ \verts {z}\a =\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\autoridad. \over z^{ \ell - n + 1} \pars {1 + z}} { \dd z \over 2 \pi\ic } = \sum_ {k = 0}^{ \infty } \pars {-1}^{k} \oint_ {0\ <\ \verts {z}\a =\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\a\autoridad. \over z^{ \ell - n - k + 1}}{ \dd z \over 2 \pi\ic } \\ [3mm]&= \sum_ {k = 0}^{ \infty } \pars {-1}^{k}\, \delta_ { \ell - n,k} = \color {#66f}{ \large\left\lbrace\begin {array}{lcl} \pars {-1}^{ \ell - n} & \mbox {si} & \ell \geq n \\ [2mm] 0&& \mbox {de lo contrario} \end {array} \right. } \end {align}