5 votos

Encuentre $\sum\limits_{k\, \text{ odd}} \frac{2(k^2-1)}{k^4+k^2+1}$

Cómo encontrar $$\sum_{k \text{ odd}} \frac{2(k^2-1)}{k^4+k^2+1}$$ Aquí encontramos $\displaystyle\sum_{k=1}^{\infty} \frac{2(k^2-1)}{k^4+k^2+1}=1$ y sabemos que $\displaystyle\sum_{k \,\text{odd}} + \sum_{k \,\text{even}}=1.$ ¿Podemos utilizar esta información para encontrar la suma? ¿O tal vez podamos encontrarla de otra manera?

Podemos decir que nuestra suma es igual a $$\color{red}{2}\sum_{k=1}^{\infty}\frac{(2k-1)^2-1}{(2k-1)^4+(2k-1)^2+1}=\sum_{k=1}^{\infty} \left(\frac{1-4k}{4k^2-2k+1}+\frac{4k-3}{4k^2-6k+3}\right),$$ pero no creo que podamos ver algo de eso.

EDITAR: En realidad, Wolfram encuentra que $$2\sum_{k=1}^{\infty}\frac{(2k-1)^2-1}{(2k-1)^4+(2k-1)^2+1}=\pi \text{sech}\left(\frac{\sqrt{3} \pi}{2}\right).$$ Es una forma cerrada muy bonita.

9voto

Cortizol Puntos 2331

Escribo aquí para que todos puedan ver. Finalmente lo resuelvo.

En primer lugar, hay que tener en cuenta que $$\sum_{k \text{ odd}} \frac{2(k^2-1)}{k^4+k^2+1}=\sum_{k=1}^{\infty}(-1)^{k-1}\frac{2k-1}{k^2-k+1},$$ porque $$\sum_{k=1}^{\infty}(-1)^{k-1}\frac{2k-1}{k^2-k+1}=\sum_{k\, \text{odd}}\left(\frac{2k-1}{k^2-k+1}-\frac{2(k+1)-1}{(k+1)^2-(k+1)+1}\right).$$

Ahora, utilice la fórmula $$\frac{1}{\cos \pi z}=\frac{4}{\pi}\sum_{k=0}^{\infty} (-1)^k \frac{2k+1}{(2k+1)^2-(2z)^2}=\frac{4}{\pi}\sum_{k=1}^{\infty} (-1)^{k-1} \frac{2k-1}{(2k-1)^2-(2z)^2}$$ y establecer $z=i\cdot \alpha.$ Encontramos $$\text{sech}(\pi \alpha)=\frac{4}{\pi}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{2k-1}{(2k-1)^2+4\alpha^2}$$ y a continuación, establecer $\displaystyle\alpha = \frac{\sqrt{3}}{2}$ encontramos $$\text{sech}\left(\frac{\sqrt{3}\pi}{2}\right)=\frac{4}{\pi}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{2k-1}{(2k-1)^2+3}=\frac{1}{\pi}\sum_{k=1}^{\infty}(-1)^{k-1}\frac{2k-1}{k^2-k+1}$$ o $$\sum_{k \text{ odd}} \frac{2(k^2-1)}{k^4+k^2+1}=\sum_{k=1}^{\infty}(-1)^{k-1}\frac{2k-1}{k^2-k+1}=\pi \text{sech}\left(\frac{\sqrt{3}\pi}{2}\right).$$


Añadido: Fórmula $$\frac{1}{\cos \pi z}=\frac{4}{\pi}\sum_{k=0}^{\infty} (-1)^k \frac{2k+1}{(2k+1)^2-(2z)^2}$$ se deriva de (el mismo enlace anterior) $$\pi \tan \pi z = \sum_{k=0}^{\infty} \frac{8z}{(2k+1)^2 - 4z^2}, \qquad (2z \neq \pm 1, \pm 3, \dots).$$ Desde $\dfrac{1}{\sin z}=\cos z + \tan \dfrac{z}{2}$ encontramos, además, que $$\frac{\pi}{\sin \pi z}=\frac{1}{z}-\frac{2z}{z^2-1^2}+\frac{2z}{z^2-2^2}\pm\cdots, \qquad (z \neq 0, \pm 1, \pm 2, \dots),$$ y, por último, sustituyendo $z$ aquí por $\dfrac{1}{2}-z,$ $$\frac{\pi}{4 \cos \pi z}=\frac{1}{1^2-(2z)^2}-\frac{3}{3^2-(2z)^2}+\frac{5}{5^2-(2z)^3}\pm \cdots, \qquad (2z \neq \pm 1, \pm 3, \dots).$$

0voto

Matthew Scouten Puntos 2518

Arce recibe $${\frac {2}{229}}\,\sum _{r={\it RootOf} \left( 16\,{{\it \_Z}}^{4}-32 \,{{\it \_Z}}^{3}+24\,{{\it \_Z}}^{2}-6\,{\it \_Z}+1 \right) } \left( 56\,{r}^{3}-45\,{r}^{2}-23\,r+21 \right) \Psi \left( 1-r \right)$$

El cuártico es irreducible con dos pares de raíces complejas conjugadas. No sé si hay alguna razón para esperar que los valores de $\Psi(1-r)$ para tener cualquier relaciones especiales (que no sea $\overline{\Psi(1-r)} = \Psi(1-\overline{r})$ ).

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X