$2017 /1= 2017$, un primer;
$2018/2 = 1009$, una de las principales; y
$2019/3 = 673$, una de las principales.
Llame a una secuencia de un trío.
Si $2020/4 = 505$ fueron primo, entonces tendríamos un cuarteto y lo mismo para un quinteto, etc. Pero $505$ no es primo, así que no es un cuarteto. No he encontrado ninguna cuartetos (todavía) a pesar de los tríos no son difíciles de encontrar.
Pregunta: ¿cuántos cuartetos hay?
Vamos a identificar una secuencia inicial de el primer.
Observar que un prime puede ser un primer trío sólo si es $13$ o es $=1$ o $37$ mod $60$.
Y puede ser un primer cuarteto sólo si es $=1$ mod $120$.
Mis cálculos, con la asistencia de Alexa, indican que el trío los primos de menos de $2017$ son:
$13, 37, 157, 421, 541, 877, 1201, 1381, \text { and } 1621.$
EDIT: $421$ es no un trío principal. No puedo culpar a este en Alexa.