Aquí es la integral
$$\int_0^\infty \lfloor x \rfloor e^{-x}dx$$
Aquí es lo que tengo hasta ahora:
$$I = \sum_{n=0}^\infty \int_n^{n+1} n e^{-x}dx$$
$$ = \sum_{n=0}^\infty -ne^{-n-1} + ne^{-n}$$
$$ = \sum_{n=0}^\infty -ne^{-n-1} + ne^{-n}$$
$$ = \sum_{n=0}^\infty ne^{-n}(1 -e^{-1})$$
$$ = (1 -e^{-1})\sum_{n=0}^\infty ne^{-n}$$
$$ = (1 -e^{-1})\sum_{n=0}^\infty \sum_{k=0}^{\infty} \frac{-(-n)(-n)^k}{k!}$$
$$ = (1 -e^{-1})\sum_{n=0}^\infty \sum_{k=0}^{\infty} \frac{-(-n)^{k+1}}{k!}$$
$$ = (1 -e^{-1})\sum_{n=0}^\infty \sum_{k=0}^{\infty} \frac{-(-n)^{k+1}}{(k+1)!}(k+1)$$
$$ = (1 -e^{-1})\sum_{n=0}^\infty \sum_{k=0}^{\infty} \frac{-k(-n)^{k+1}}{(k+1)!} + \frac{-(-n)^{k+1}}{(k+1)!}$$
$$ = (1 -e^{-1})\sum_{n=0}^\infty (1-e^{-n})[\sum_{k=0}^{\infty} \frac{-k(-n)^{k+1}}{(k+1)!}]$$
En este punto me di por vencido.