$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[#ffd,10px]{\ds{%
\int_{0}^{1}{\dd x \over \pars{1 + x}\bracks{x^{2}\pars{1 - x}}^{1/3}}}}
\,\,\,\stackrel{x\ \mapsto\ 1/x}{=}\,\,\,
\int_{\infty}^{1}{-\dd x/x^{2} \over
\pars{1 + 1/x}\bracks{x^{-2}\pars{1 - 1/x}}^{1/3}}
\\[5mm] = &\
\int_{1}^{\infty}{\dd x \over \pars{1 + x}\pars{x - 1}^{1/3}}
\,\,\,\stackrel{x - 1\ \mapsto\ x}{=}\,\,\,
\int_{0}^{\infty}{x^{-1/3} \over 2 + x}\,\dd x
\,\,\,\stackrel{x/2\ \mapsto\ x}{=}\,\,\,
2^{-1/3}\int_{0}^{\infty}{x^{-1/3} \over 1 + x}\,\dd x
\\[5mm] \stackrel{x\ =\ 1/t - 1}{=}\,\,\,&
2^{-1/3}\int_{1}^{0}\pars{{1 \over t} - 1}^{-1/3}\,t
\pars{-\,{\dd t \over t^{2}}}
\\[5mm] = & 2^{-1/3}\
\overbrace{\int_{0}^{1}t^{-2/3}\pars{1 - t}^{-1/3}\,\dd t}
^{\ds{\mrm{B}\pars{{1 \over 3},{2 \over 3}}}}\qquad
\pars{~\mrm{B}:\ Beta\ Function~}
\\[5mm] = &\
2^{-1/3}\,{\Gamma\pars{1/3}\Gamma\pars{2/3} \over \Gamma\pars{1}}
\qquad\pars{~\Gamma:\ Gamma\ Function.\ \Gamma\pars{1} = 1~}
\\[5mm] = &\
2^{-1/3}\,{\pi \over \sin\pars{\pi/3}}
\qquad\pars{~Euler\ Reflection\ Formula~}
\\[5mm] = &\
\bbx{{2^{2/3} \over \root{3}}\,\pi} \approx 2.8792
\end{align}