$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, nº 1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}&\overbrace{\color{#66f}{\large%
\int{1 \over \root{x^{2} - 1}\pars{x^{2} + 1}}\,\dd x}}
^{\ds{\dsc{x} = \dsc{\cosh\pars{t}}}}\ =\
\int{1 \over \underbrace{\root{\cosh^{2}\pars{t} - 1}}_{\dsc{\sinh\pars{t}}}\ \bracks{\cosh^{2}\pars{t} + 1}}\,\sinh\pars{t}\,\dd t
\\[5mm]&=\int{\dd t \over \cosh^{2}\pars{t} + 1}
=\int{\sech^{2}\pars{t}\,\dd t \over 1 + \sech^{2}\pars{t}}
=\int{\sech^{2}\pars{t}\,\dd t \over 2 - \tanh^{2}\pars{t}}
\\[5mm]&={1 \over 2\root{2}}
\int\bracks{{1 \over \root{2} - \tanh\pars{t}}
+{1 \over \root{2} + \tanh\pars{t}}}\sech^{2}\pars{t}\,\dd t
\\[5mm]&={\root{2} \over 4}\,
\ln\pars{1 + \tanh\pars{t}/\root{2} \over 1 - \tanh\pars{t}/\root{2}}
={\root{2} \over 2}\,\,{\rm arctanh}\pars{\tanh\pars{t} \over \root{2}}
\\[5mm]&={\root{2} \over 2}
\,\,{\rm arctanh}\pars{\root{\cosh^{2}\pars{t} - 1} \over \root{2}\cosh\pars{t}}
=\color{#66f}{\large{\root{2} \over 2}
\,\,{\rm arctanh}\pars{\root{x^{2} - 1} \over \root{2}x}}
+ \mbox{a constant}
\end{align}