$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\sum_{k=0}^{n}{n \choose k}{m \choose k}:\ {\large ?}}$
${\large\tt\mbox{Hereafter, I'll illustrate a general method:}}$
\begin{align}&\color{#66f}{\large\sum_{k=0}^{n}{n \choose k}{m \choose k}}
=\sum_{k=0}^{n}{n \choose k}\oint_{\verts{z}\ =\ 1}
{\pars{1 + z}^{m} \over z^{k + 1}}\,{\dd z \over 2\pi\ic}
=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{m} \over z}\,
\sum_{k=0}^{n}{n \choose k}\pars{1 \over z}^{k}\,{\dd z \over 2\pi\ic}
\\[3mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{m} \over z}\,
\pars{1 + {1 \over z}}^{n}\,{\dd z \over 2\pi\ic}
=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{m + n} \over z^{n + 1}}\,
\,{\dd z \over 2\pi\ic} = \color{#66f}{\large{m + n \choose n}}
\end{align}