8 votos

¿Cuáles son las formas modulares que corresponde "naturalmente" a la función Zeta de Riemann o de Dirichlet L?

Sabemos que, si tomamos los coeficientes de la serie de Dirichlet de Riemann zeta función o Dirichlet L funciones y utilizar los coeficientes de expansión q, no conseguiremos formas modulares.

¿Pero hay algún otro modo que "naturalmente" puede generar formas modulares de la función zeta de Riemann o Dirichlet L funciones?

8voto

ajma Puntos 123

Hay una razón simple de por qué usted nunca va a obtener los coeficientes de la de la serie de Dirichlet $\zeta(s)$ o $L(s, \chi)$ como el q-coeficientes de dilatación de forma modular. La razón es que estos $L$-serie de Euler productos en los cuales el término de un primer $p$ $1 / $(lineal polinomial en $p^{-s}$), mientras que las formas modulares siempre le $1 / $(polinomio cuadrático en $p^{-s}$).

Por supuesto, hay dos maneras fáciles de hacer polinomios cuadráticos de lineal de los polinomios:

  • Usted puede multiplicar dos lineal de los polinomios juntos. Esto lleva a la conclusión de que los productos como el $\zeta(s)^2$ o $L(s, \chi_1) L(s, \chi_2)$ debe corresponder a las formas modulares; y este es el caso, al menos la mitad del tiempo (hay una paridad condición a imponer). Las correspondientes formas modulares son llamados Eisenstein de la serie. Un ejemplo se da en user1952009 la respuesta, que construye una forma modular correspondiente al producto $\zeta(s) \zeta(s + 1 - 2k)$. (El hecho de que $1-2k$ es impar es una instancia de la paridad condición: $\zeta(s) \zeta(s + 2)$ no corresponde a una forma modular.)
  • Usted puede plaza de la variable en el polinomio lineal para obtener un polinomio cuadrático. Esto lleva a la conclusión de que, por ejemplo, $\zeta(2s)$ debe corresponder a una forma modular (debido a $1 - p^{-2s}$ es un polinomio cuadrático en $p^{-s}$). Las correspondientes formas modulares están llamados a $\theta$de la serie. De hecho, Riemann usado esta en su estado original de 1859 papel, donde introdujo la hipótesis de Riemann: su prueba funcional de la ecuación de la de Riemann zeta función se basa en el hecho de que (debido a Jacobi) que el $\theta$serie $\tfrac{1}{2} + \sum_{n \ge 1} q^{n^2}$ es una forma modular de peso 1/2.

2voto

user1952009 Puntos 81

$\scriptstyle \color{grey}{\text{(eliding the convergence problems)}}$

El Eiseinstein serie $$G_{2k}(\tau) = \sum_{(n,m) \in \mathbb{Z}^2 \setminus (0,0)} \frac{1}{(m+n\tau)^{2k}} \tag{1}$$ Has the Fourier series representation $% $ $G_{2k}(\tau) = 2 \zeta(2k) + 2 \frac{(2i\pi)^{2k}}{(2k-1)!} \sum_{n=1}^\infty \sigma_{2k-1}(n) e^{2i \pi n \tau}$

Usando $(2\pi n)^{-s} \Gamma(s) = \int_0^\infty x^{s-1} e^{-2 \pi nx}dx$ tenemos que la transformada de Mellin de $G_{2k}(ix)-2\zeta(2k)$ $$F(s) = \int_0^\infty x^{s-1} (G_{2k}(ix)-2\zeta(k))dx = 2\frac{(2i\pi)^{2k}}{(2k-1)!} \int_0^\infty x^{s-1} \sum_{n=1}^\infty \sigma_{2k-1}(n) e^{-2 \pi n x}dx$ $ $$ = 2\frac{(2i\pi)^{2k}}{(2k-1)!}\sum_{n=1}^\infty \sigma_{2k-1}(n)\int_0^\infty x^{s-1}e^{-2 \pi n x}dx = 2\frac{(2i\pi)^{2k}}{(2k-1)!} \Gamma(s) (2\pi)^{-s}\sum_{n =1}^\infty \sigma_{2k-1}(n) n^{-s}$ $ $$ = \boxed{\frac{2(-1)^{k}}{(2k-1)!} (2i\pi)^{2k-s}\Gamma(s) \zeta(s) \zeta(s-2k+1)}$ $


Desde $\zeta(s) = \sum_{n=1}^\infty n^{-s}$ y $\sigma_{2k-1}(n) = \sum_{d | n} d^{2k-1}$ tenemos $$\zeta(s) \zeta(s-2k+1) = (\sum_{l=1}^\infty l^{-s})(\sum_{m=1}^\infty m^{2k-1} m^{-s})= \sum_{n=1}^\infty n^{-s} \sum_{d | n} d^{2k-1} = \sum_{n=1}^\infty n^{-s} \sigma_{2k-1}(n)$ $


Usando $i \pi - 2 i \pi \sum_{d=0}^\infty e^{2 i \pi d \tau} = i\pi - 2 i \pi \frac{1}{1-e^{2i \pi \tau}} = i \pi \frac{e^{2i \pi \tau}+1}{e^{2i \pi \tau}-1}=\pi \cot \pi \tau = \frac{1}{\tau} + \sum_{m=1}^\infty \frac{1}{\tau-m}+\frac{1}{\tau-m}$ y diferenciación $2k-1$ veces tenemos $$\frac{(- 2 i \pi)^{2k}}{(2k-1)!} \sum_{d=1}^\infty d^{2k-1} e^{2 i \pi d \tau} = \sum_{m=-\infty}^\infty \frac{1}{(m+\tau)^{2k}}$ $ así que $$G_{2k}(\tau) = \sum_{m \in \mathbb{Z}^*} \frac{1}{m^{2k}} + \sum_{n=1}^\infty \sum_{m=-\infty}^\infty \frac{1}{(m+n\tau)^{2k}}$ $ $$ = 2\zeta(2k) + \sum_{n=1}^\infty \frac{(- 2 i \pi)^{2k}}{(2k-1)!} \sum_{d=1}^\infty d^{2k-1} e^{2 i \pi d n \tau}$ $ $$ = 2\zeta(2k)+\frac{(- 2 i \pi)^{2k}}{(2k-1)!} \sum_{n=1}^\infty \sigma_{2k-1}(n) e^{2 i \pi n \tau}$ $


Por supuesto, la ecuación funcional $\zeta(s)$ prueba $G_{2k}(\tau)$ es una forma modular que $(1)$ demuestra directamente $$G_{2k}(-1/\tau) = \tau^{2k} G_{2k}(\tau)$ $ es decir $G_{2k}(i/x)-2\zeta(2k) = (ix)^{2k} G_{2k}(ix) -2\zeta(2k)$ y $$F(s) = \int_0^\infty x^{s-1} (G_{2k}(ix)-2\zeta(2k))dx \underset{y = 1/x}{=} \int_0^\infty y^{-s-1} (G_{2k}(i/y)-2\zeta(2k))dy $ $ $$ = \int_0^\infty y^{-s-1} ((iy)^{2k} G_{2k}(iy) -2\zeta(2k))dy = (-1)^{k} F(2k-s)$ $

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X