$$\frac{d^2f}{dx^2}=-xf\tag 1$ $ Cambio de variable:$\quad \epsilon=\frac{1}{x}\quad\implies\quad \frac{d\epsilon}{dx}=-\frac{1}{x^2}= -\epsilon^2$
$\frac{df}{dx}=\frac{df}{d\epsilon}\frac{d\epsilon}{dx}=-\epsilon^2\frac{df}{d\epsilon}$
$\frac{d^2f}{dx^2}=\frac{d\left(\frac{df}{dx} \right)}{dx}=\frac{d\left(\frac{df}{dx} \right)}{d\epsilon}\frac{d\epsilon}{dx}=\frac{d\left(-\epsilon^2\frac{df}{d\epsilon} \right)}{d\epsilon}(-\epsilon^2)=\epsilon^4\frac{d^2f}{d\epsilon^2}+2\epsilon^3\frac{df}{d\epsilon}$
Poniéndolos en la ecuación$(1)$ conduce a:$\quad\epsilon^4\frac{d^2f}{d\epsilon^2}+2\epsilon^3\frac{df}{d\epsilon}=-\frac{1}{\epsilon}f$$$f=-\epsilon^4\left(\epsilon\frac{d^2f}{d\epsilon^2}+2\frac{df}{d\epsilon}\right)\tag 2$ $$$x\to\infty \quad\implies\quad \epsilon\to 0 \quad\implies\quad \epsilon^4\to 0\quad\implies\quad f\to 0$ $ Además, puede desarrollar$f(\epsilon)$ en series de potencia de$\epsilon$, eso es$f=c_0+c_1\epsilon+c_2\epsilon^2+...$ y ponerlo en Eq.$(2)$ que lleva a$c_0=0$.