$$ \int_{-\pi/2}^{\pi/2} \frac{1}{1+e^{\sin x}}dx $$
$$ =\int_{0}^{-\pi/2} \frac{1}{1+e^{\sin x}}dx+\int_{\pi/2}^{0} \frac{1}{1+e^{\sin x}}dx $$
$$\text{Ahora, poniendo } y=-x \text{ en } \int_{0}^{-\pi/2} \frac{1}{1+e^{\sin x}}dx,$$
$$\text{ obtenemos } \int_{0}^{-\pi/2} \frac{1}{1+e^{\sin x}}dx=\int_{0}^{\pi/2}\frac{1}{1+e^{\sin(-y)}}(-dy)$$ $$=\int_{0}^{\pi/2}\frac{e^{\sin y}}{1+e^{\sin y}}(-dy)\text{ ya que }\sin(-y)=-\sin y$$
$$=\int_{\pi/2}^{0}\frac{e^{\sin y}}{1+e^{\sin y}}dy \text{ ya que } \int_{a}^{b}f(x)dx=-\int_{b}^{a}f(x)dx$$
$$=\int_{\pi/2}^{0}\frac{e^{\sin x}}{1+e^{\sin x}}dx \text{ ya que } \int_{a}^{b}f(x)dx=\int_{a}^{b}f(y)dy$$
$$\implies \int_{-\pi/2}^{\pi/2} \frac{1}{1+e^{\sin x}}dx=\int_{0}^{-\pi/2} \frac{1}{1+e^{\sin x}}dx+\int_{\pi/2}^{0} \frac{1}{1+e^{\sin x}}dx $$
$$=\int_{\pi/2}^{0}\frac{e^{\sin x}}{1+e^{\sin x}}dx+\int_{\pi/2}^{0} \frac{1}{1+e^{\sin x}}dx$$
$$=\int_{\pi/2}^{0}\frac{1+e^{\sin x}}{1+e^{\sin x}}dx=\int_{\pi/2}^{0}dx$$
1 votos
Debo decir que tu comentario sobre las funciones pares/impares me llevó a probar lo que hice a continuación en mi comentario. Bueno.