Considere la siguiente construcción:
Podemos ir en reversa, y empezar a construir tales ejemplos comenzar con un número, y la inserción de los dígitos en ella. Si tenemos un primo, podemos continuar para añadir más dígitos. Si no es así, podemos intentar agregar el dígito a otro lugar.
Edit: Si nosotros también estamos considerando la posibilidad de ceros a la izquierda que se borran después de truncar el primer dígito, tenemos unos cuantos ejemplos que no se incluyeron en la construcción anterior.
He encontrado todos los ejemplos para el primer par de dígitos de los casos ;
O para ser más específicos, si nos fijamos en los números con
$d=2,3,4,5,6\dots$ dígitos, tenemos:
$$20 ,118 ,734 ,4679, 31722\dots$$
tales números primos entre $d$ números de dos dígitos.
Parece que esta secuencia de seguir creciendo, lo que implica que hay infinitamente muchos de esos números primos. Pero esto no debe ser el caso.
Usted puede ver las listas de todos los ejemplos se dividió en las listas basadas en su longitud (dígitos) :
$d = 2$
[11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 97]
$d = 3$
[101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 229, 233, 239, 241, 263, 269, 271, 283, 293, 307, 311, 313, 317, 331, 337, 347, 353, 359, 367, 373, 379, 383, 397, 401, 419, 421, 431, 433, 439, 443, 457, 461, 463, 467, 479, 487, 491, 503, 509, 523, 541, 547, 563, 569, 571, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 733, 739, 743, 751, 761, 769, 773, 797, 811, 823, 829, 839, 853, 859, 863, 883, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 997]
$d = 4$
[1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1123, 1151, 1153, 1163, 1181, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1277, 1279, 1283, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1427, 1429, 1433, 1439, 1451, 1459, 1481, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1549, 1567, 1571, 1579, 1597, 1601, 1607, 1609, 1613, 1619, 1627, 1637, 1657, 1663, 1667, 1693, 1697, 1699, 1709, 1723, 1733, 1753, 1759, 1783, 1789, 1801, 1811, 1823, 1831, 1861, 1867, 1871, 1873, 1879, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2029, 2039, 2053, 2063, 2069, 2083, 2111, 2113, 2129, 2131, 2137, 2141, 2161, 2179, 2203, 2213, 2237, 2239, 2243, 2269, 2273, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2371, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2441, 2467, 2503, 2539, 2593, 2609, 2617, 2633, 2647, 2659, 2663, 2671, 2677, 2683, 2689, 2693, 2699, 2711, 2713, 2719, 2729, 2731, 2741, 2791, 2797, 2803, 2833, 2837, 2843, 2903, 2939, 2953, 2963, 2969, 2971, 3001, 3011, 3019, 3023, 3037, 3041, 3061, 3067, 3079, 3083, 3109, 3119, 3121, 3137, 3163, 3167, 3181, 3187, 3191, 3217, 3229, 3253, 3259, 3271, 3301, 3307, 3313, 3319, 3331, 3347, 3359, 3361, 3371, 3373, 3391, 3407, 3413, 3433, 3457, 3461, 3463, 3467, 3491, 3511, 3517, 3529, 3533, 3539, 3541, 3547, 3559, 3571, 3583, 3593, 3607, 3613, 3617, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3823, 3833, 3847, 3853, 3863, 3907, 3911, 3917, 3919, 3929, 3931, 3947, 3967, 4001, 4003, 4007, 4013, 4019, 4021, 4051, 4057, 4073, 4079, 4091, 4127, 4129, 4133, 4139, 4157, 4159, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4261, 4271, 4283, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4421, 4423, 4457, 4463, 4483, 4493, 4507, 4517, 4519, 4523, 4547, 4561, 4567, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4651, 4657, 4663, 4673, 4679, 4691, 4721, 4729, 4733, 4751, 4759, 4787, 4789, 4793, 4799, 4801, 4817, 4831, 4861, 4871, 4877, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4987, 5003, 5009, 5011, 5023, 5039, 5059, 5099, 5101, 5107, 5113, 5147, 5167, 5171, 5179, 5197, 5209, 5231, 5233, 5237, 5273, 5303, 5309, 5323, 5347, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5471, 5477, 5479, 5503, 5563, 5569, 5623, 5639, 5641, 5647, 5653, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5741, 5743, 5791, 5839, 5869, 5903, 5923, 5939, 5953, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6091, 6101, 6113, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6211, 6217, 6229, 6247, 6263, 6269, 6271, 6277, 6301, 6311, 6317, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6397, 6421, 6427, 6451, 6473, 6481, 6491, 6529, 6547, 6553, 6563, 6569, 6571, 6577, 6599, 6607, 6619, 6653, 6659, 6661, 6673, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6791, 6793, 6803, 6823, 6829, 6833, 6841, 6863, 6883, 6907, 6911, 6917, 6947, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7039, 7043, 7069, 7079, 7103, 7109, 7127, 7129, 7151, 7159, 7193, 7211, 7219, 7229, 7243, 7283, 7297, 7307, 7309, 7331, 7333, 7349, 7351, 7369, 7393, 7433, 7451, 7457, 7487, 7517, 7523, 7541, 7547, 7561, 7573, 7591, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7691, 7699, 7703, 7723, 7753, 7793, 7823, 7829, 7853, 7873, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7951, 8011, 8017, 8039, 8053, 8059, 8101, 8111, 8117, 8123, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8389, 8419, 8423, 8429, 8431, 8443, 8461, 8467, 8513, 8537, 8539, 8543, 8563, 8573, 8597, 8599, 8623, 8629, 8641, 8647, 8663, 8677, 8693, 8719, 8753, 8761, 8783, 8803, 8831, 8837, 8839, 8863, 8893, 8923, 8929, 8941, 8963, 8971, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9059, 9067, 9103, 9109, 9127, 9137, 9151, 9157, 9161, 9173, 9181, 9199, 9209, 9239, 9241, 9277, 9283, 9293, 9311, 9319, 9337, 9341, 9371, 9377, 9397, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9533, 9539, 9547, 9601, 9613, 9619, 9629, 9631, 9643, 9661, 9677, 9679, 9697, 9719, 9721, 9733, 9739, 9743, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9829, 9833, 9839, 9859, 9871, 9883, 9907, 9929, 9941, 9967, 9973]
Puedo subir listas para $d\ge5$ si quieres.
Esto no responde a su pregunta como una prueba real (refutación), este es todavía un problema abierto como Barry Cipra escribió en los comentarios.
Michael en su respuesta proporciona un razonamiento de por qué esta conjetura es probable que sea cierto.