Encuentra este pequeño puzzle en facebook, no se si era una broma.
Encontrar $x$ $$\frac{(3x^2-27)(8x^2)^6}{4(9-3x)(x^2+3x)}=\frac{\tan(x+4)}{\log(x+\frac{1}{4})}$$
Estoy pensando
- LHS numerador: tomando el factor 3 y ampliar el soporte derecho
- LHS denominador: tomando el factor de -3 de la izquierda y soporte de x desde el soporte derecho
$$\frac{3(x^2-9)(8^6x^{12})}{-12x(x-3)(x+3)}=\frac{tan(x+4)}{log(x+\frac{1}{4})} $$
$$\frac{(x^2-9)(8^6x^{12})}{-4x(x^2-9)}=\frac{tan(x+4)}{log(x+\frac{1}{4})} \quad \text{taking the factor of 3 out and expanding noting the identity} $$
$$\frac{(8.8^5x^{12})}{-4x}=\frac{tan(x+4)}{log(x+\frac{1}{4})} \quad \text{cancelling of course, rearranging $8^6 = 8.8^5$} $$ $$(-2.8^5x^{11})=\frac{tan(x+4)}{log(x+\frac{1}{4})} \quad \text{even more cancelling} $$
Yo llego hasta este punto no está seguro de lo que sucede a continuación gracias
Tal vez
$$(-2.8^5)=\frac{tan(x+4)}{x^{11}log(x+\frac{1}{4})} $$
Y entonces....
$$(-2.8^5)=\frac{tan(x+4)}{log\left(x+\frac{1}{4}\right)^{x^{11}}} $$
No ¿
$$(-2.8^5x^{11})=\frac{tan(x+4)}{log(x+\frac{1}{4})} $$
$$log\left(x+\frac{1}{4}\right)(-2.8^5x^{11})=tan(x+4) $$
Ahora pensar en un triángulo $tan(A) = \frac{Opposite}{Adjacent}$
Así que.... $$\frac{log\left(x+\frac{1}{4}\right)(-2.8^5x^{11})}{1}=tan(x+4) \quad \text{opp: $registro\left(x+\frac{1}{4}\right)(-2.8^5x^{11})$, adj: 1} $$
Así que.... $$hypotenuse = \sqrt{1^2 + \left(log\left(x+\frac{1}{4}\right)(-2.8^5x^{11})\right)^2} $$
$$hypotenuse = \sqrt{1 + 2log\left(x+\frac{1}{4}\right)(4.8^{10}x^{22})} $$ $$hypotenuse = \sqrt{1 + log\left(x+\frac{1}{4}\right)(8.8^{10}x^{22})} $$ $$hypotenuse = \sqrt{1 + log\left(x+\frac{1}{4}\right)(8^{11}x^{22})} $$
$$cos(x+4) = A/H $$ $$cos(x+4) = \frac{1}{\sqrt{1 + log\left(x+\frac{1}{4}\right)(8^{11}x^{22})}}$$ $$cos^2(x+4) = \frac{1}{1 + log\left(x+\frac{1}{4}\right)(8^{11}x^{22})}$$ $$1-sin^2(x+4) = \frac{1}{1 + log\left(x+\frac{1}{4}\right)(8^{11}x^{22})}, \quad \text{using the idea that $cos^2(x) = 1 - sen^2(x) $}$$
$$1-\frac{log\left(x+\frac{1}{4}\right)(-2.8^5x^{11})}{\sqrt{1 + log\left(x+\frac{1}{4}\right)(8^{11}x^{22})}}\frac{log\left(x+\frac{1}{4}\right)(-2.8^5x^{11})}{\sqrt{1 + log\left(x+\frac{1}{4}\right)(8^{11}x^{22})}} = \frac{1}{1 + log\left(x+\frac{1}{4}\right)(8^{11}x^{22})}$$
$$1-\frac{\left(log\left(x+\frac{1}{4}\right)(-2.8^5x^{11}) \right)^2}{1 + log\left(x+\frac{1}{4}\right)(8^{11}x^{22})} = \frac{1}{1 + log\left(x+\frac{1}{4}\right)(8^{11}x^{22})}$$
$$(1 - log\left(x+\frac{1}{4}\right)(8^{11}x^{22}))+log\left(x+\frac{1}{4}\right)(8^{11}x^{22}) = 1$$
$$-( log\left(x+\frac{1}{4}\right)(8^{11}x^{22}))+log\left(x+\frac{1}{4}\right)(8^{11}x^{22}) = 0$$
$$0 = 0 $$
maldita sea.....