Calcular:
$$\mathcal{J}=\int_0^{\frac{\sqrt{3}}{2}}{\ln ^2x\frac{\arccos ^3\!\sqrt{1-x^2}}{\sqrt{1-x^2}}}\text{d}x$$
Mi intento: $$\int_0^{\frac{\sqrt{3}}{2}}{\ln ^2x\frac{\arccos ^3\!\sqrt{1-x^2}}{\sqrt{1-x^2}}}\text{d}x=\int_0^{\frac{\pi}{3}}{t^3\ln ^2\sen t\text{d}t=\frac{1}{16}}\int_0^{\frac{2\pi}{3}}{t^3\ln^2 \left( \sin \frac{t}{2} \right)}\text{d}t=\frac{1}{16}\mathcal{I} \\ \begin{align*} \mathcal{I}&=\int_0^{\frac{2\pi}{3}}{t^3\ln ^2\left( 2\sin \frac{t}{2} \right)}\text{d}t-2\ln 2\int_0^{\frac{2\pi}{3}}{t^3\ln \left( 2\sin \frac{t}{2} \right)}\text{d}t-\ln ^22\int_0^{\frac{2\pi}{3}}{t^3}\text{d}t \\ &=-\text{Ls}_{6}^{\left( 3 \right)}\left( \frac{2\pi}{3} \right) +2\ln\text{2Ls}_{5}^{\left( 3 \right)}\left( \frac{2\pi}{3} \right) +\frac{4\pi ^4\ln ^22}{81} \end{align*} $$ Por lo tanto, de acuerdo a la fórmula \begin{align*} \zeta \left( n-k,\left\{ 1 \right\} \!^k \right) &-\sum_{j=0}^k{\frac{\left( -i\tau \right) \!^j}{j!}}\text{Li}_{2+k-j,\left\{ 1 \right\} ^{n-k-2}}\left( \text{e}^{i\tau} \right) \\ &=\frac{i^{k+1}\left( -1 \right) \!^{n-1}}{\left( n-1 \right) !}\sum_{r=0}^{n-k-1}{\sum_{m=0}^r{\left( \begin{array}{c} n-1\\ k,m,r-m\\ \end{array} \right)}}\times \left( \frac{i}{2} \right) \!^r\left( -\pi \right) \!^{r-m}\text{Ls}_{n-\left( r-m \right)}^{\left( k+m \right)}\left( \tau \right) \end{align*} tenemos $$\begin{align*} \text{Ls}_{6}^{\left( 3 \right)}\left( \frac{2\pi}{3} \right) =&-\frac{946\pi ^6}{76545}-\frac{16\pi ^3}{27}\text{Gl}_{2,1}\left( \frac{2\pi}{3} \right) -\frac{8\pi ^2}{3}\text{Gl}_{3,1}\left( \frac{2\pi}{3} \right) +8\pi \text{Gl}_{4,1}\left( \frac{2\pi}{3} \right) \\ &+12\text{Gl}_{5,1}\left( \frac{2\pi}{3} \right) +6\zeta ^2\left( 3 \right) \end{align*} \\ \text{Ls}_{5}^{\left( 3 \right)}\left( \frac{2\pi}{3} \right) =\frac{8\pi ^3}{27}\text{Cl}_2\left( \frac{2\pi}{3} \right) -4\pi \text{Cl}dimm_4\left( \frac{2\pi}{3} \right) -\frac{16\pi ^2}{27}\zeta \left( 3 \right) +\frac{242}{27}\zeta \left( 5 \right) $$ y llegamos \begin{align*} \mathcal{I}=&\frac{946\pi ^6}{76545}+\frac{4\pi ^2\ln ^22}{81}+\frac{16\pi ^3}{27}\text{Gl}_{2,1}\left( \frac{2\pi}{3} \right) +\frac{8\pi ^2}{3}\text{Gl}_{3,1}\left( \frac{2\pi}{3} \right) -8\pi \text{Gl}_{4,1}\left( \frac{2\pi}{3} \right) \\ &-12\text{Gl}_{5,1}\left( \frac{2\pi}{3} \right) +\frac{16\ln 2\pi ^3}{27}\text{Cl}_2\left( \frac{2\pi}{3} \right) -8\ln 2\pi \text{Cl}_4\left( \frac{2\pi}{3} \right) -6\zeta ^2\left( 3 \right) \\ &-\frac{32\ln 2\pi ^2}{27}\zeta \left( 3 \right) +\frac{848\ln 2}{27}\zeta \left( 5 \right) \end{align*} Así \begin{align*} \mathcal{J}=\frac{1}{16}\mathcal{I}=&\frac{473\pi ^6}{612360}+\frac{\pi ^3}{27}\text{Gl}_{2,1}\left( \frac{2\pi}{3} \right) +\frac{\pi ^2}{6}\text{Gl}_{3,1}\left( \frac{2\pi}{3} \right) -\frac{\pi}{2}\text{Gl}_{4,1}\left( \frac{2\pi}{3} \right) \\ &-\frac{3}{4}\text{Gl}_{5,1}\left( \frac{2\pi}{3} \right) +\frac{\pi ^3\ln 2}{27}\text{Cl}_2\left( \frac{2\pi}{3} \right) -\frac{\pi \ln 2}{2}\text{Cl}_4\left( \frac{2\pi}{3} \right) +\frac{\pi ^4\ln ^22}{324} \\ &-\frac{2\pi ^2\ln 2}{27}\zeta \left( 3 \right) -\frac{3}{8}\zeta ^2\left( 3 \right) +\frac{121\ln 2}{108}\zeta \left( 5 \right) \end{align*}
Notaciones: \begin{align*} &\text{Cl}_{a_1,...,a_k}\left( \theta \right) =\begin{cases} \Im \text{Li}_{a_1,...,a_k}\left( \text{e}^{i\theta} \right) \,\,\text{if}\,\,a_1+\cdots +a_k\,\,\text{even}\\ \Re \text{Li}_{a_1,...,a_k}\left( \text{e}^{i\theta} \right) \,\,\text{if}\,\,a_1+\cdots +a_k\,\,\text{odd}\\ \end{casos} \\ &\text{Gl}_{a_1,...,a_k}\left( \theta \right) =\begin{cases} \Re \text{Li}_{a_1,...,a_k}\left( \text{e}^{i\theta} \right) \,\,\text{if}\,\,a_1+\cdots +a_k\,\,\text{even}\\ \Im \text{Li}_{a_1,...,a_k}\left( \text{e}^{i\theta} \right) \,\,\text{if}\,\,a_1+\cdots +a_k\,\,\text{odd}\\ \end{casos} \\ &\text{Li}_{a_1,.\!\:.\!\:.\!\:,a_k}\left( z \right) =\sum_{n_1>\cdots >n_k>0}{\frac{z^{n_1}}{n_{1}^{a_1}\cdots n_{k}^{a_k}}} \\ &\zeta \left( a_1,.\!\:.\!\:.\!\:a_k \right) =\text{Li}_{a_1,.\!\:.\!\:.\!\:,a_k}\left( 1 \right) \\ &\text{Ls}_{n}^{\left( k \right)}\left( \sigma \right) =-\int_0^{\sigma}{\theta ^k\ln ^{n-1-k}\left| 2\sin \frac{\theta}{2} \right|}\,\text{d}\theta \end{align*}
Lo que me pregunto es que hay otra manera de calcular la integral,complejo o real método.
Gracias!