Área $S_x=[OFCG]-[L_1L_2O]=4r_1r_2-\tfrac14\,|L_1L_2|^2\sin2\theta$.
Supongamos sin pérdida de generalidad que $|O_1T_1|=r_1\ge r_2=|O_2T_2|$.
\begin{align}
|PO_1|&=r_1-r_2
,\\
|O_1O_2|&=\sqrt2\,(r_1+r_2)
,\\
|T_1T_2|&=|PO_2|
.\\
\text{Let }\quad \angle O_2O_1P&=\phi
,\quad \angle O_1QP =\tfrac\pi2
.\\
\text{Note that }\quad
PO_1&\perp L_1L_2,\quad PQ\perp L_1O,\quad O_1Q\perp L_2O,\quad
\\
\triangle PO_1Q &\sim \triangle L_1L_2O
,\quad \angle PO_1Q =\angle L_1L_2O=\theta
.\\
\text{Then }\quad
\theta&=\tfrac34\pi-\phi
,\\
\phi&
=\arccos\left(\frac{|PO_1|}{|O_1O_2|}\right)
=\arccos\left(\frac{r_1-r_2}{\sqrt2(r_1+r_2)}\right)
,\\
|L_1T_2|=|L_1T_4|&=r_2+|L_1O|
,\\
|L_2T_1|=|L_2T_3|&=r_1+|L_2O|
,\\
|L_1T_2|+|L_2T_1|&=
|T_1T_2|+|L_1L_2|
\\
&=r_1+r_2+|L_1O|+|L_2O|
\tag{1}\label{1}
,\\
|L_1O|&=r_1+|L_1T_1|
,\\
|L_2O|&=r_2+|L_2T_2|
,\\
|L_1O|+|L_2O|
&=r_1+r_2+|L_1T_1|+|L_2T_2|
\\
&=r_1+r_2+|T_1T_2|-|L_1L_2|
\tag{2}\label{2}
.
\end {Alinee el}
Combinación de \eqref{1} y \eqref{2} resulta en\begin{align}
|L_1L_2|&=r_1+r_2
.
\end {Alinee el}
\begin{align}
S_x&=4r_1r_2-\tfrac14\,|L_1L_2|^2\sin2\theta
\\
&=4r_1r_2-\tfrac14\,(r_1+r_2)^2
\sin(\tfrac32\pi-2\phi)
\\
&=4r_1r_2-\tfrac14\,(r_1+r_2)^2
(-\cos2\phi)
\\
&=4r_1r_2-\tfrac14\,(r_1+r_2)^2
(1-2\,\cos^2\phi)
\\
&=4r_1r_2-\tfrac14\,(r_1+r_2)^2
\left(1-\frac{(r_1-r_2)^2}{(r_1+r_2)^2}\right)
\\
&=4r_1r_2-r_1r_2=3r_1r_2
.
\end {Alinee el}